www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationdifferenzierbare funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - differenzierbare funktion
differenzierbare funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differenzierbare funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:03 Di 24.04.2007
Autor: Lord-Fishbone

Aufgabe
Seien I=[a,b] a<b ein Intervall und [mm] x_{0}\in [/mm] I ein Punkt. Die stetige Funktion [mm] f:I\to\IR [/mm] sei in [mm] I\backslash [x_{0}] [/mm] differenzierbar und es existiere der Grenzwert
[mm] \alpha:= \limes_{x\rightarrow x_{0}} [/mm] f´(x) [mm] \in\IR [/mm]
Zeigen Sie: Die Funktion f ist in [mm] x_{0} [/mm] differenzierbar und es gilt f´( [mm] x_{0} [/mm] )= [mm] \alpha [/mm]

Ich weiss leider gar nicht wie ich an diese Aufgabe rangehen soll und bin für jeden Ansatz dankbar.

        
Bezug
differenzierbare funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Di 24.04.2007
Autor: WalDare

Eine Funktion f: I [mm] \to \IR [/mm] ist im Punkt [mm] x_0 [/mm] doch differenzierbar, wenn [mm]\limes_{x\rightarrow x_{0}}f'(x) [/mm] existiert.
da [mm]\limes_{x\rightarrow x_{0}}f'(x) := \alpha [/mm] ist, ist [mm]f[/mm] in [mm] x_{0} [/mm] differenzierbar und [mm]f'(x_{0})=\alpha[/mm].

Bezug
                
Bezug
differenzierbare funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Di 24.04.2007
Autor: angela.h.b.


> Eine Funktion f: I [mm]\to \IR[/mm] ist im Punkt [mm]x_0[/mm] doch
> differenzierbar, wenn [mm]\limes_{x\rightarrow x_{0}}f'(x)[/mm]
> existiert.

Hallo,

nein, das stimmt so nicht.
Eine Funktion ist im Punkt [mm] x_0 [/mm] diffbar, wenn der Grenzwert $ [mm] \limes_{x\rightarrow x_0}\bruch{f(x)-f(x_0)}{x-x_0} [/mm] $  existiert.

Was Du schreibst, soll ja für eine Funktion f, welche auf I stetig und auf I \  [mm] \{x_0\} [/mm] diffbar ist, erst gezeigt werden.

Gruß v. Angela

Bezug
        
Bezug
differenzierbare funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Di 24.04.2007
Autor: angela.h.b.


> Seien I=[a,b] a<b ein Intervall und [mm]x_{0}\in[/mm] I ein Punkt.
> Die stetige Funktion [mm]f:I\to\IR[/mm] sei in [mm]I\backslash [x_{0}][/mm]
> differenzierbar und es existiere der Grenzwert
>  [mm]\alpha:= \limes_{x\rightarrow x_{0}}[/mm] f´(x) [mm]\in\IR[/mm]
>  Zeigen Sie: Die Funktion f ist in [mm]x_{0}[/mm] differenzierbar
> und es gilt f´( [mm]x_{0}[/mm] )= [mm]\alpha[/mm]

Hallo,

Differenzierbarlkeit im Punkt [mm] x_0 [/mm] ist ja so erklärt:

der Grenzwert [mm] \limes_{x\rightarrow x_0}\bruch{f(x)-f(x_0)}{x-x_0} [/mm] existiert.

Du mußt also herausfinden, ob es diesen Grenzwert gibt.
Setzt Du [mm] x_0 [/mm] ein, hast Du, da die Funktion stetig ist, die Situation [mm] \bruch{0}{0} [/mm] - ein Fall für die l'Hospital-Regel. Wendest Du diese nun an, bist Du nahezu fertig.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]