www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungendim(Bild) und dim(Kern)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - dim(Bild) und dim(Kern)
dim(Bild) und dim(Kern) < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dim(Bild) und dim(Kern): grundlegende(!) Hilfe
Status: (Frage) beantwortet Status 
Datum: 15:36 So 13.06.2010
Autor: carlosfritz

Aufgabe
Sei K Körper, V ein 3-dim. K-Vektorraum, [mm] \{u,v,w\}=:B [/mm] Basis von V, und [mm] \alpha [/mm] der Endomorphismus von V mit [mm] \alpha(u)=v-u, \alpha(v)=w-v, \alpha(w)=u-w. [/mm]

Bestimme eine Basis von [mm] Kern(\alpha) [/mm] und eine Basis von [mm] Bild(\alpha). [/mm]
Entscheide ob [mm] \alpha [/mm] nilpotent, diagonalisierbar oder trianulierbar ist, wenn [mm] K=\IR, \IC [/mm] oder charK=3 ist.

Hallo,
heute habe ich ganz ganz grundlegende Probleme, die ich auch mit schauen im Script vom letzten Semester, sowie Internetsuche nicht sicher lösen konnte.

und zwar möchte ich ich für [mm] \alpha [/mm] die darstellende Matrix (bzgl B) herausfinden.
Ich stehe da kurz vor der verzweiflung wieso ich das nicht hinbekomme! Kann mir das jemand nochmal zeigen?

das einzige, was ich bislang herausgefunden habe ist, dass [mm] \alpha((u+v+w))=0 [/mm] ist.

Oh, bitte nehmt mir mein Brett vom Kopf :)

        
Bezug
dim(Bild) und dim(Kern): Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 So 13.06.2010
Autor: angela.h.b.


> Sei K Körper, V ein 3-dim. K-Vektorraum, [mm]\{u,v,w\}=:B[/mm]
> Basis von V, und [mm]\alpha[/mm] der Endomorphismus von V mit
> [mm]\alpha(u)=v-u, \alpha(v)=w-v, \alpha(w)=u-w.[/mm]
>  
> Bestimme eine Basis von [mm]Kern(\alpha)[/mm] und eine Basis von
> [mm]Bild(\alpha).[/mm]
>  Entscheide ob [mm]\alpha[/mm] nilpotent, diagonalisierbar oder
> trianulierbar ist, wenn [mm]K=\IR, \IC[/mm] oder charK=3 ist.
>  Hallo,
>  heute habe ich ganz ganz grundlegende Probleme, die ich
> auch mit schauen im Script vom letzten Semester, sowie
> Internetsuche nicht sicher lösen konnte.
>  
> und zwar möchte ich ich für [mm]\alpha[/mm] die darstellende
> Matrix (bzgl B) herausfinden.

Hallo,

fangen wir also damit an.

Sprüchlein: "In den Spalten der Darstellungsmatrix bzgl. B stehen die Bilder der Basisvektoren von B in Koordinaten bzgl. B."

Los geht's:

Das Bild des ersten Basisvektors u ist [mm] \alpha(u)=-u+v= \vektor{-1\\1\\0}_{(B)}, [/mm] und dies ist die erste Spalte der gesuchten Matrix.

Bestimme von dieser den kern - wir müssen das Ergebnis dann noch interpretieren.


>  Ich stehe da kurz vor der verzweiflung wieso ich das nicht
> hinbekomme! Kann mir das jemand nochmal zeigen?
>  
> das einzige, was ich bislang herausgefunden habe ist, dass
> [mm]\alpha((u+v+w))=0[/mm] ist.

Das stimmt.

Gruß v. Angela



Bezug
                
Bezug
dim(Bild) und dim(Kern): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 So 13.06.2010
Autor: carlosfritz

Hallo, und danke.

Als matrix bekomme ich dann heraus [mm] \pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 }. [/mm]

Aber wenn ich nun [mm] \alpha(u) [/mm] = [mm] \alpha((u_{1},u_{2},u_{3})) =\pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 }\vektor{u_{1} \\ u_{2} \\ u_{3}} [/mm] bekomme ich ja nur irgendeinen quatsch heraus und schon gar nicht v-u?

Bezug
                        
Bezug
dim(Bild) und dim(Kern): Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 So 13.06.2010
Autor: schachuzipus

Hallo carlosfritz,

> Hallo, und danke.
>  
> Als matrix bekomme ich dann heraus [mm]\pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 }.[/mm] [ok]
>  
> Aber wenn ich nun [mm]\alpha(u)[/mm] = [mm]\alpha((u_{1},u_{2},u_{3})) =\pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 }\vektor{u_{1} \\ u_{2} \\ u_{3}}[/mm]
> bekomme ich ja nur irgendeinen quatsch heraus und schon gar
> nicht v-u?

Wenn du [mm] $u=\vektor{u_1\\u_2\\u_3}$ [/mm] bezeichnest, werden die Koordinaten von [mm] $v=\vektor{v_1\\v_2\\v_3}, w=\vektor{w_1\\w_2\\w_3}$ [/mm] von u abhängen, ich erhalte auf dei Schnelle [mm] $v=\vektor{u_3\\u_1\\u_2}$ [/mm] und [mm] $w=\vektor{u_2\\u_3\\u_1}$ [/mm]

Die Darstellungsmatrix bzg. der Basis [mm] $\{u,v,w\}$ [/mm] ist korrekt.

Bestimme nun ihren Kern, indem du sie in Zeilenstufenform bringst.

Es wird sich herausstellen, dass der Kern eindimensional ist, aufgespannt von ...

Damit ist das [mm] $\operatorname{Bild}(\alpha)$ [/mm] zweidimensional, aufgespannt von 2 linear unabh. Spaltenvektoren der Darstellungsmatrix ...

Gruß

schachuzipus

Bezug
                                
Bezug
dim(Bild) und dim(Kern): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 So 13.06.2010
Autor: carlosfritz

Hallo,
und auch dir vielen lieben Dank!

Okay, das mit den u und v habe ich nun, verstanden und die Zeilenstufenform herzustellen ist ja auch nicht sonderlich schwer.
Als Ergebnis ziehe ich nun heraus, dass alle [mm] a\in [/mm] V mit [mm] a_{1}=a_{2}=a_{3} [/mm] liegen. Somit sollte [mm] \{(1,1,1) \in V \} [/mm] eine Basis des Kerns sein.

Damit ist klar, dass die Basis des Bildes 2-Elemente hat.
Warum dies aber von 2 lin.-unabhängigen Spaltenvektoren aufgespannt wird ist mir nicht klar.

Ich dachte immer: [mm] \alpha [/mm] (Basis) ist wieder Basis, kann ja aber nicht sein, da es ja mit der Dimension dann nicht mehr stimmt, dann wohl immerhin Erzeugendensystem, oder?

Ich habe mir mal angeschaut, was mit der Basis passiert:
[mm] \alpha(u)=(u_{3}-u_{1} [/mm] , [mm] u_{1}-u_{2} [/mm] , [mm] u_{2}-u_{3}) [/mm]
[mm] \alpha(v)=(u_{2}-u_{3} [/mm] , [mm] u_{3}-u_{1} [/mm] , [mm] u_{1}-u_{2}) [/mm]
[mm] \alpha(w)=(u_{1}-u_{2} [/mm] , [mm] u_{2}-u_{3} [/mm] , [mm] u_{3}-u_{1}) [/mm]

Jetzt muss ich ja nur noch eine lineare abhängigkeit finden?

Edit:
[mm] \alpha(v)=-\alpha(u)+\alpha(w) [/mm]


Okay, der Rest dann wohl erst nachm Fussball :)

Aber vielleicht ein Frage vorweg (ohne jetzt zu überlegen oder nachzuschauen, weil ich gleich los "muss")

[mm] \alpha^{2} [/mm] entspricht [mm] \pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 }*\pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 } [/mm] ???

Bezug
                                        
Bezug
dim(Bild) und dim(Kern): Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 So 13.06.2010
Autor: angela.h.b.


> Hallo,
>  und auch dir vielen lieben Dank!
>  
> Okay, das mit den u und v habe ich nun, verstanden und die
> Zeilenstufenform herzustellen ist ja auch nicht sonderlich
> schwer.
>  Als Ergebnis ziehe ich nun heraus, dass alle [mm]a\in[/mm] V mit
> [mm]a_{1}=a_{2}=a_{3}[/mm] liegen. Somit sollte [mm]\{(1,1,1) \in V \}[/mm]
> eine Basis des Kerns sein.

Hallo,

dem muß man jetzt aber noch etwas Leben einhauchen...
Es deute ja nichts daraufhin, daß [mm] \vektor{1\\1\\1} [/mm]  ein Element von V ist...
Lösung: [mm] \vektor{1\\1\\1} [/mm]  ist der Koordinatenvektor des Basisvektors des Kerns von [mm] \alpha. [/mm]
Es ist [mm] \vektor{1\\1\\1}_{(B)}=1*u+1*v+1*w [/mm] , und damit hast Du die Basis des Basis des Kerns.

>  
> Damit ist klar, dass die Basis des Bildes 2-Elemente hat.
>  Warum dies aber von 2 lin.-unabhängigen Spaltenvektoren
> aufgespannt wird ist mir nicht klar.
>  
> Ich dachte immer: [mm]\alpha[/mm] (Basis) ist wieder Basis,

Das ist der entscheidende Irrtum.
Wenn die Abbildung injektiv ist, wird die Basis auf eine Basis des Bildes abgebildet, i.a. aber lediglich auf ein Erzeugendensystem.


> kann ja
> aber nicht sein, da es ja mit der Dimension dann nicht mehr
> stimmt, dann wohl immerhin Erzeugendensystem, oder?

Ja.

>  
> Ich habe mir mal angeschaut, was mit der Basis passiert:
>  [mm]\alpha(u)=(u_{3}-u_{1}[/mm] , [mm]u_{1}-u_{2}[/mm] , [mm]u_{2}-u_{3})[/mm]
>  [mm]\alpha(v)=(u_{2}-u_{3}[/mm] , [mm]u_{3}-u_{1}[/mm] , [mm]u_{1}-u_{2})[/mm]
>  [mm]\alpha(w)=(u_{1}-u_{2}[/mm] , [mm]u_{2}-u_{3}[/mm] , [mm]u_{3}-u_{1})[/mm]

Das weißt Du bereits aus der Aufgabenstellung:

>>>> $ [mm] \alpha(u)=v-u, \alpha(v)=w-v, \alpha(w)=u-w. [/mm] $

> Jetzt muss ich ja nur noch eine lineare abhängigkeit
> finden?

Da Du weißt, daß die Dim des Bildes =2 ist, kannst Du jetzt nachschauen, ob Du unter den dreien zwei linear unabhängige findest.

Du kannst aber das Ergebnis natürlich auch aus der ZSF ablesen. Dieser entnimmt man, daß die erste und zweite Spalte der Darstellungsmatrix eine Basis des Bildes sind - Du müßtest jetzt die Koordinatenvektoren wieder übersetzen.

Gruß v. Angela




Bezug
                                        
Bezug
dim(Bild) und dim(Kern): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 So 13.06.2010
Autor: angela.h.b.


> Aber vielleicht ein Frage vorweg (ohne jetzt zu überlegen
> oder nachzuschauen, weil ich gleich los "muss")
>  
> [mm]\alpha^{2}[/mm] entspricht [mm]\pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 }*\pmat{ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 }[/mm]
> ???

Hallo,

ja, das ist dann die Darstellungsmatrix v. [mm] \alpha^2 [/mm] bzgl der Basis B.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]