www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumedimension des Eigenraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - dimension des Eigenraums
dimension des Eigenraums < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dimension des Eigenraums: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:06 Di 09.10.2007
Autor: Zerwas

Aufgabe
Sei [mm] \varphi [/mm] ein Endomorphismus eines [mm] \IC [/mm] VRs V. Für [mm] \lambda\in\IC [/mm] sei [mm] V_\lambda [/mm] der Eigenraum zu [mm] \lambda [/mm] und [mm] n_\lambda [/mm] die Vielfachheit des irreduzieblen Faktors (T - [mm] \lambda) [/mm] im Minimalpolynom von [mm] \varphi. [/mm] Zeigen Sie:
[mm] dimV\le\summe_{\lambda Eigenwert von \varphi} n_\lambda [/mm] * [mm] dimV_\lambda [/mm]

Ich habe absolut keinen Plan wie diesen Beweis führen -.-

Überlegt habe ich mir:
bedeutet: [mm] "n_\lambda [/mm] die Vielfachheit des irreduzieblen Faktors (T - [mm] \lambda) [/mm] im Minimalpolynom", dass [mm] (T-\lambda)^{n_\lambda} [/mm] im Minimalpolynom steht?
Selbiges dann also so aussieht:
[mm] (T-\lambda_1)^{n_\lambda_1}(T-\lambda_2)^{n_\lambda_2}...(T-\lambda_m)^{n_\lambda_m} [/mm] ?
Aber was kann ich über die Dimension von V sagen?

Und wie überhaupt ansetzen?

Danke und Gruß
Zerwas

        
Bezug
dimension des Eigenraums: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Do 11.10.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]