www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriediophantische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - diophantische Gleichung
diophantische Gleichung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diophantische Gleichung: Korrektur
Status: (Frage) überfällig Status 
Datum: 22:05 Di 01.11.2011
Autor: Schmetterfee

Aufgabe
Zeige: die Gleichung [mm] a_{1}x_{1}+...+a_{n}x_{n}=c, a_{i} \in \IZ, [/mm] c [mm] \in \IZ [/mm] ist in [mm] \IZ [/mm] lösbar genauj dann,, wenn [mm] ggT(a_{1},..a_{n})|c. [/mm] Bestimme die Struktur der Lösungsmenge im Fall n=2.

Hallöchen
so der Beweis der Aufgabe ist für mich kein Problem mir macht die Lösungsmenge nur gewisse Probleme.

Also ich habe nun folgendes gemacht.

Für die Gleichung [mm] a_{1}x_{1}+a_{2}x_{2}=c [/mm] soll die Lösungsmenge bestimmt werden.
Zunächst habe ich [mm] a_{1}=da_{1}' [/mm] und [mm] a_{2}=da_{2}' [/mm] mit [mm] d=ggT(a_{1},a_{2}) [/mm] gesetzt.

Dann ist die homogene Gleichung [mm] a_{1}x_{1}+a_{2}x_{2}=0 [/mm]
äquivalent zu
[mm] a_{1}'x_{1}=-a_{2}'x_{2} [/mm]
Da nun [mm] a_{1}' [/mm] und [mm] a_{2}' [/mm] teilerfremd sind ist [mm] x_{1} [/mm] durch [mm] a_{2}' [/mm] und [mm] x_{2} [/mm] durch [mm] a_{1}' [/mm] teilbar.
Sämtliche Lösungen der homogenen Gleichung sind also durch
[mm] x_{1}=ta_{2}' [/mm] und [mm] x_{2}=-ta_{1}' [/mm] für t [mm] \in \IZ [/mm] gegeben.

Durch Anwendung des euklidischen Algorithmus kann man Zahlen e,f bestimmen sodass [mm] a_{1}e+a_{2}f=d [/mm] mit [mm] d=ggT(a_{1},a_{2}) [/mm] erfüllt ist.
Setzt man dann noch [mm] s=\bruch{c}{d}, [/mm] so ist
[mm] x_{01}=se [/mm] und [mm] x_{02}=sf [/mm]
eine Lösung der Gleichung [mm] a_{1}x_{1}+a_{2}x_{2}=c. [/mm]
Die Gesamtheit der Lösungen ist dann gegeben durch
[mm] x_{1}=x_{01}+ta_{2}' [/mm] und [mm] x_{2}=x_{02}-t a_{1}' [/mm] für t [mm] \in \IZ. [/mm]

Meine Frage nun stimmt mein Vorgehen so?
Außerdem interessiert es mich ob man diese Aufgabe auch einfacher lösen könnte. Denn insgesamt gibt es für diese Aufgabe nur 2 Punkte und das finde ich ziemlich wenig für den gewissermaßen trivialen Beweis und der etwas anspruchsvolleren Bestimmung der Struktur.

LG Schmetterfee

        
Bezug
diophantische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:05 Mi 02.11.2011
Autor: donquijote

Die Lösung sieht für mich gut uns und ich sehe auch nicht, wie man es einfacher machen könnte.
Ich finde den zweiten Teil auch nicht viel schwieriger als den ersten, ist halt nur etwas mühsam aufzuschreiben.

Bezug
        
Bezug
diophantische Gleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:26 Do 03.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]