www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikdrei weiße und sieben rote
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - drei weiße und sieben rote
drei weiße und sieben rote < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

drei weiße und sieben rote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:02 Sa 03.02.2007
Autor: Woodstock_x

Aufgabe
Ein Kasten enthält drei weiße und sieben rote Kugeln Ein Spieler zieht ohne Zürücklegen fünf Kugeln. Wie groß ist die Wahrscheinlichkeit, dass genau zwei weiße Kugeln unter den gezogenen sind?

Hallo Leute
Ich habe ein Problem bei dieser Aufgabe. Ich glaube aber auch, dass ich ein grundsätzliches Problem bei der Stochastik habe, d.h. nähere Erläuterungen, würde ich nicht schlecht finden, aber keine Formel, denn die Glaube habe ich selber.
Also bis jetzt dachte ich mir, dass ich heraus finden muss wieviele Möglichkeiten gibt es insgesamt. Ich glaube es ist egal in welcher reinfolge( kann es aber nicht gut begründen), also würde ich mit [mm] \vektor{n \\ k} [/mm] arbeiten: [mm] \vektor{10 \\ 5}=36 [/mm]
Nun würde ich herausfinden, wie ich zwei weiße kugeln auf fünf ziehungen verteilen kann. Dabei gehe ich genau so vor.
[mm] \vektor{5 \\ 2}=10 [/mm]
Folglich ist meine Wahrscheinlichkeit [mm] \bruch{10}{36}, [/mm] dies Stimmt aber nicht mit der Lösung überein, nämlich [mm] \bruch{5}{12}. [/mm]
Für Hilfe wäre ich dankbar
Gruß

        
Bezug
drei weiße und sieben rote: Antwort
Status: (Antwort) fertig Status 
Datum: 01:44 Sa 03.02.2007
Autor: danm357

Hallo,

zuerst einmal scheinst Du die Binomialkoeffizienten nicht richtig zu beherrschen.

[mm] \vektor{n \\ k} [/mm] = [mm] \bruch{k!}{n!(n-k)!} [/mm]

Bei der Lösung bist Du aber gar nicht so weit daneben. Du teilst die Mächtigkeit des Ereignisraumes durch die Mächtigkeit des Ergebnisraumes/Grundraumes.

Ersteres ist die Anzahl der Möglichkeiten, daß zwei weiße Kugeln unter den fünf gezogenen sind, wobei die Kugeln nicht zurückgelegt werden. Letzteres ist die Anzahl aller Möglichkeiten, wenn man 5 Kugeln aus den insgesamt 10 ohne Zurücklegen zieht. Diese Anzahl ist, wie Du richtig erkannt hast mit

[mm] \vektor{10 \\ 5} [/mm] = 252 (!) gegeben.

Für die Mächtigkeit des Ereignisraumes mußt Du bloß abzählen, wie viele Möglichkeiten existieren, zwei der drei weißen Kugeln zu ziehen [mm] \vektor{3 \\ 2} [/mm] = 3. Dann mußt Du noch beachten, daß drei der sieben roten Kugeln gezogen werden [mm] \vektor{7 \\ 3} [/mm] = 35. Insgesamt ergibt das dann 3*35 = 105 Möglichkeiten.

Die Wahrscheinlichkeit ergibt sich dann insgesamt zu [mm] \bruch{105}{252} [/mm] = [mm] \bruch{5}{12}. [/mm]

Bezug
                
Bezug
drei weiße und sieben rote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:39 Sa 03.02.2007
Autor: Woodstock_x

Hallo

Vielen Dank für deine schnelle Antwort.
Könntest du mir noch eine paar Erklärungen geben, wann eine Ziehung geordnet ist und wann nicht?

Bezug
                        
Bezug
drei weiße und sieben rote: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Sa 03.02.2007
Autor: Karl_Pech

Hallo [mm] Woodstock_x, [/mm]


> Vielen Dank für deine schnelle Antwort.
>  Könntest du mir noch eine paar Erklärungen geben, wann
> eine Ziehung geordnet ist und wann nicht?  


Ich denke, das kommt auf die Aufgabenstellung an. Hier ist die Reihenfolge egal, weil die Kugeln gleicher Farbe nicht unterscheidbar sind. Ich denke aber, daß bei folgender abgewandelter Aufgabe:


"Ein Kasten enthält drei weiße (Nummern 1 bis 3) und sieben rote (Nummern 1 bis 7) Kugeln Ein Spieler zieht ohne Zürücklegen fünf Kugeln und reiht sie den Nummern nach auf. Wie groß ist die Wahrscheinlichkeit, dass genau zwei weiße Kugeln unter den gezogenen sind?"


Die Reihenfolge eigentlich wieder wichtig werden sollte? Die W'keit für diesen Fall kann ich dir jetzt so auf Anhieb erstmal nicht sagen.



Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]