www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisduale Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - duale Norm
duale Norm < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

duale Norm: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:22 So 04.12.2005
Autor: GetBack

Hallo Leute,

ich hab da mal wieder ein Problem mit einer Aufgabe.

Sei [mm] \| \cdot \| [/mm] eine Norm auf dem [mm] \mathbb{R}^n [/mm].
a) Zeigen Sie, daß durch [mm] J(x)(y):= \summe_{i=1}^{n} y_{i} x_{i} [/mm] für [mm] x,y \in \mathbb{R}^n [/mm] ein linerarer Operator [mm] J: \mathbb{R}^n \to \left( \mathbb{R}^n , \| \cdot \| \right)^{\*} [/mm] definiert wird.
b) Zeigen Sie, daß auch [mm] \| x \|_{\*}:=\| J(x) \| [/mm] für [mm] x \in \mathbb{R}^n [/mm] eine Norm ist (sie heißt duale Norm).
c) Für [mm] 1 \le p < \infty [/mm] berechne man die duale Norm zu [mm] \| x \|_{p}:= \left( \summe_{i=1}^{n} \left| x_i \right|^p \right)^{\frac{1}{p}} [/mm].

Aufgabe a) ist ja recht einfach zu zeigen, aber schon bei b) hapert es bei mir: Ich muss doch im 1. Normaxiom (Definitheit) nachprüfen, daß [mm] \| x \|_{\*}=0 \gdw x=0 [/mm]. Wenn [mm] x=0 [/mm] ist die Sache klar, aber die Rückrichtung nicht: [mm] \| x \|_{\*}=0 \Rightarrow J(x)=\summe_{i=1}^{n} y_{i} x_{i}=0 [/mm]. Meiner Meinung wird die Summe nicht nur bei x=0 gleich 0, sondern auch dann, wenn z.B. [mm] y=0 [/mm] und x beliebig ist. Oder darf man das so nicht betrachten?

Und bei Aufgabe c) habe ich bis jetzt noch keinen vernüftigen Ansatz gefunden. Vom logischen her müßte es auf die q-Norm hinauslaufen und vielleicht irgendwas mit der Hölderschen Ungleichung, aber ich habe ja schon ein Problem bei [mm] \| x \|_{\*}= \| J(x) \|_{p} [/mm] und komme da nicht weiter.

Könnt ihr mir dabei helfen?
Viele liebe Grüße
GetBack

        
Bezug
duale Norm: b)
Status: (Antwort) fertig Status 
Datum: 15:31 Mo 05.12.2005
Autor: banachella

Hallo!

Bei b) solltest du beachten, dass [mm] $\|J(x)\|=0$ [/mm] bedeutet, dass [mm] $\|J(x)(y)\|=0$ [/mm] für alle [mm] $y\in\IR^n$. [/mm] Insbesondere ist dann auch [mm] $\|J(x)(e_k)\|=0$ [/mm] für [mm] $k=1,\dots,n$, [/mm] wobei [mm] $e_k$ [/mm] die kanonischen Einheitsvektoren darstellen sollen.
Abgesehen davon ist ja [mm] $\|J(x)\|$ [/mm] die Norm von $J(x)$ in [mm] $(\IR^n,\|.\|)^\*$, [/mm] insbesondere ist [mm] $\|J(x)\|=0\ \Leftrightarrow\ [/mm] J(x)=0$.

Bei c) bin ich ganz deiner Meinung: Hier muss die [mm] $\|.\|_q$-Norm [/mm] rauskommen. Ich muss da jetzt aber selber erstmal drüber nachdenken, vielleicht melde ich mich nachher nochmal...

Gruß, banachella

Bezug
        
Bezug
duale Norm: c)
Status: (Antwort) fertig Status 
Datum: 16:06 Mo 05.12.2005
Autor: banachella

Hallo!

Jetzt bin ich ihm glaube ich auf die Schliche gekommen... [grins]

Was du zeigen musst, ist ja [mm] $\sup_{y\in\IR^n}\bruch{|J(x)(y)|}{\|y\|_p}=\|x\|_q$. [/mm]

Dass [mm] $|J(x)(y)|\le\|y\|_p\|x\|_q$ [/mm] - und damit [mm] $\|J(x)\|\le\|x\|_q$ [/mm] - folgt schlicht aus der Hölder-Ungleichung. Die Idee ist jetzt, ein [mm] $y\in\IR^n$ [/mm] zu finden, so dass [mm] $|J(x)(y)|\ge\|y\|_p \|x\|_q$. [/mm] Probier's doch mal mit [mm] $y_k:=\begin{cases} 0,&\mbox{ falls } x_k=0,\\ \bruch{|x_k|^q}{x_k},& \mbox{ sonst.}\end{cases}$. [/mm] Und benutze, dass die Operatornorm submultiplikativ ist, d.h. [mm] $|J(x)(y)|\le \|J(x)\|\,\|y\|$... [/mm]

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]