www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertee-funktion grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - e-funktion grenzwert
e-funktion grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-funktion grenzwert: korrektur
Status: (Frage) beantwortet Status 
Datum: 16:59 Mi 25.05.2011
Autor: freak-club

Aufgabe
berechne grenzwert:

[mm] \limes_{x\rightarrow 1+}x^{\bruch{1}{x-1}} [/mm]



da wenn ich einfach x=1 einsetze  rausbekomme: [mm] x^{\bruch{1}{0}} [/mm] will ich mit der bernoulli regel arbeiten. dabei berechne ich ja den grenzwert mit meinen ersten ableitungen.

zum ableiten würde ich aber als erstes [mm] x^{\bruch{1}{x-1}} [/mm] als [mm] e^{\bruch{1}{x-1}*ln(x)} [/mm]  schreiben.

soweit passt das mit dem löser meines professors. jedoch rechnet er dann nicht [mm] \limes_{x\rightarrow 1+}e^{\bruch{1}{x-1}*ln(x)} [/mm] sondern [mm] e^{\limes_{x\rightarrow 1+}\bruch{1}{x-1}*ln(x)} [/mm]

meine frage ist nun warum?...

die e funktion wir ja nie null, sondern läuft nur gegen null ereicht diese aber nie. muss ich deshalb den grenzwert des exponenten berechnen? oder berechne ich den grenzwert des exponenten weil ich vorher die ursprüngliche funktion zu einer e-funktion umgewandelt habe.

dankbar für jede hilfe

        
Bezug
e-funktion grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mi 25.05.2011
Autor: Blech

Hi,

was ist die Bernoulli-Regel? Das gleiche wie L'Hospital? Wegen der Ableitungen nehm ich das mal an.

L'Hospital gilt aber nur für Brüche und [mm] $\exp\left(\frac{\ln x}{x-1}\right)$ [/mm] ist kein Bruch. Aber unter gewissen Umständen gilt

[mm] $\lim_x f(g(x))=f(\lim_x [/mm] g(x))$

En detail solltest Du das bei der Einführung der Grenzwerte finden. Im Prinzip muß f im relevanten Bereich stetig sein.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]