e funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:16 Mi 09.03.2005 | Autor: | peach |
mein problem: nach dem ableiten von [mm] \wurzel{x} [/mm] * [mm] e^{3x^2 +5} [/mm] bin ich auf [mm] \bruch{1}{2} x^{-\bruch{1}{2}} [/mm] * [mm] e^{3x^2 +5} [/mm] + [mm] \wurzel{x} [/mm] * [mm] 6xe^{3x^2 +5} [/mm] gekommen. jetzt weiß ich nur nicht, wie ich im nächsten schritt zusammenfassen kann.
ich brauche ganz dringend hilfe, weil ich morgen schon die klausur schreibe. wäre also ganz toll, wenn ihr mir helfen könntet!
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)
|
|
|
|
Nabend,
also Ableitung ist richtig, frage mich jedoch was du da noch zusammen fassen willst? Ist doch ok so?
Ich denke mal mehr als eine 2. Ableitung oder Werte in diese Ableitung einsetzen musst du doch auch nicht. Wo ist das Problem?
Gruß Jens
P.S. Du kannst aus 1/2*x^-1/2 kannst du folgendes machen, aber ich denke, selbst das wir dir nicht neu sein. --> 1/2 * [mm] \wurzel{x}[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:16 Mi 09.03.2005 | Autor: | peach |
ich dachte, dass ich wie bei [mm] (x^2 [/mm] - 2x) [mm] e^{0,5x} [/mm] (abgeleitet und zusammengefasst: [mm] e^{0,5x} [/mm] (x - 2 + [mm] 0,5x^2 [/mm] ) weiter zusammenfassen kann... also genauer gesagt, wollte ich wissen, ob man [mm] \bruch{1}{2} x^{-\bruch{1}{2}} [/mm] * [mm] e^{3x^2 +5} [/mm] zusammenfassen kann
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Mi 09.03.2005 | Autor: | peach |
vielen dank! hab ich irgendwie verpeilt... hab das ganze schon länger nich mehr gemacht und nich dran gedacht.
also wie gesagt, vielen dank und nen schönen abend noch!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:23 Do 10.03.2005 | Autor: | cagivamito |
Ähm Loddar, wenn du nochmal genau hinschaust, habe ich (1/2*x^-1/2) versucht zusammenzufassen. Und das ist [mm] \bruch{1}{2\wurzel{x}}
[/mm]
Du meinst x^-1/2. Da stimmt dein Ergebnis. Gruß Jens
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:36 Do 10.03.2005 | Autor: | Loddar |
Guten Morgen Jens,
das war aber in Deiner Antwort nicht eindeutig dargestellt.
Da Du unseren Formeleditor nicht verwendet hast, wären Klammern in der Darstellung nötig gewesen, um deutlich zu machen, daß auch der Wurzelausdruck [mm] $\wurzel{x}$ [/mm] im Nenner steht.
Daher meine korrigierende Anmerkung ...
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:10 Fr 11.03.2005 | Autor: | cagivamito |
Es musste grad leider etwas schnell gehen zu diesem Zeitpunkt
Mit dem Formeleditor freunde ich mich so langsam aber sich mit an.
Gruß Jens
|
|
|
|