www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungebenennormalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - ebenennormalform
ebenennormalform < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ebenennormalform: gleichung für normalvek
Status: (Frage) beantwortet Status 
Datum: 17:37 Fr 07.01.2005
Autor: ghostdog

hallo ich habe ein problem mit der ebenen gleichungs aufgabe die lautet
man betimmte die parameterfreie gleichung der durch nachfolgenden angaben festgelegten  ebene E
P1(0,0,1), P2(1,-1.0), P3(-2,1,1)
die losung lautet [mm] x_{1}+2x_{2}-x_{3}+1=0 [/mm]
ist das die normalform lautet sie nicht allg.:
Ax+By+Cz+D=0
aber wie ist dann der normalvektor [mm] \overrightarrow{ n}= \vektor{A\\B\\C} [/mm]
ein ansatz ware uber das sklarproduct jeweils multipliziert mit denn vektoren die die ebende aufspannen also
[mm] \overrightarrow{ P1P2}= \vektor{1\\-1\\-1} [/mm]

[mm] \overrightarrow{ P1P3}= \vektor{-2\\1\\1} [/mm]
das müsste jeweils null sein also
[mm] \overrightarrow{ P1P2}*\overrightarrow{ n}= [/mm] 0
[mm] \overrightarrow{ P1P3}*\overrightarrow{ n}= [/mm] 0
aber irgendwie komme ich dann auch nicht auf die ebendegleichung
weis jemand bescheid?



        
Bezug
ebenennormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Fr 07.01.2005
Autor: e.kandrai


>  man betimmte die parameterfreie gleichung der durch
> nachfolgenden angaben festgelegten  ebene E
>  P1(0,0,1), P2(1,-1.0), P3(-2,1,1)
>  die losung lautet [mm]x_{1}+2x_{2}-x_{3}+1=0[/mm]
>  ist das die normalform lautet sie nicht allg.:
>   Ax+By+Cz+D=0

Diese Gleichung wird normalerweise als "Koordinatengleichung" bezeichnet. Und ja: deine Version ist die allgemeine Form davon.

>  aber wie ist dann der normalvektor [mm]\overrightarrow{ n}= \vektor{A\\B\\C}[/mm]
>  
> ein ansatz ware uber das sklarproduct jeweils multipliziert
> mit denn vektoren die die ebende aufspannen also
>  [mm]\overrightarrow{ P1P2}= \vektor{1\\-1\\-1}[/mm]
> [mm]\overrightarrow{ P1P3}= \vektor{-2\\1\\1}[/mm]

Mit [mm]P_1(0/0/1)[/mm] und [mm]P_3(-2/1/1)[/mm] ist der zweite Vektor: [mm]\overrightarrow{P_1P_3}=\vektor{-2 \\ 1 \\ 0}[/mm]
Ansonsten umständlich beschrieben, aber dein Ansatz ein paar Zeilen tiefer ist richtig.

>  das müsste
> jeweils null sein also
>  [mm]\overrightarrow{ P1P2}*\overrightarrow{ n}=[/mm] 0
>  [mm]\overrightarrow{ P1P3}*\overrightarrow{ n}=[/mm] 0

Richtig, es muss also gelten:
[mm]1\cdotn_1-1\cdotn_2-1\cdotn_3=0[/mm]
[mm]-2\cdotn_1+n_2=0[/mm]

Ein LGS mit 3 Unbekannten, und 2 Gleichungen... unterbestimmt isses, also wirst du einen Parameter brauchen.
Setz z.B. [mm]n_1=:k[/mm] in die zweite Gleichung, dann ergibt sich aus dieser zweiten Gleichung [mm]n_2=2k[/mm].
Setz [mm]n_1=k[/mm] und [mm]n_2=2k[/mm] in die erste Gleichung ein, und du bekommst [mm]n_1[/mm].
Für k kannst du was beliebiges einsetzen, nur nicht Null (so, dass der Vektor "schön" aussieht: nicht zu große Zahlen, und keine Brüche).
Das ist dein Normalenvektor.

Den setzt du in die allgemeine Gleichung ein: [mm]n_1x_1+n_2x_2+n_3x_3=d[/mm].

Fehlt also nur noch das d. Du bekommst es, indem du die Koordinaten von einem deiner drei Punkte in die Gleichung einsetzt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]