www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körper(echte) Teilmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - (echte) Teilmengen
(echte) Teilmengen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(echte) Teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 So 14.11.2010
Autor: Lyrn

Aufgabe
Es sei (G,*) eine Gruppe mit dem Zentrum Z und g [mm] \in [/mm] G, g [mm] \not\in [/mm] Z. Dann gilt für den Normalisator [mm] M_g [/mm] von g: Z [mm] \subset M_g \subset [/mm] G.

Hallo!

Ich muss also zunächst zeigen dass:
i) [mm] M_g \subset [/mm] G
ii) G nicht [mm] \subset M_g [/mm]

i) haben wir schon in der Vorlesung bewiesen
ii) Fall 1: G [mm] \subset M_g: [/mm]  Falls ein x [mm] \in M_g [/mm] ex. und x [mm] \not\in [/mm] G dann: Wiederspruch zu [mm] M_g:=\{ x \in G | m*x*m^{-1}=x \} [/mm]
Falls 2: [mm] G=M_g: [/mm] hier weiß ich nicht wie ich das zeigen soll, da mir kein Weg einfällt, bei dem ich ein Element erhalte, das in G ist, aber nicht in [mm] M_g [/mm]

Hoffe mir kann jemand helfen!

lg

        
Bezug
(echte) Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 So 14.11.2010
Autor: andreas

hallo,

was heißt es denn, dass $g$ nicht im zentrum liegt?

grüße
andreas


Bezug
                
Bezug
(echte) Teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 So 14.11.2010
Autor: Lyrn

Ich weiß es ehrlich gesagt nicht. Aber ist das für den ersten Schritt wichtig? Ich wollte zunächst zeigen dass [mm] M_g [/mm] echte Teilmenge von G ist und danach dass Z echte Teilmenge von [mm] M_g [/mm] ist.

Spielt das Zentrum denn eine Rolle beim ersten Schritt?

Bezug
                        
Bezug
(echte) Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 So 14.11.2010
Autor: andreas

ja, das ist dafür wichtig. wenn dir nicht klar ist, was das heißt, dann schlage es nach.

grüße
andreas


Bezug
                                
Bezug
(echte) Teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 So 14.11.2010
Autor: Lyrn

Naja ich weiß was das Zentrum ist, aber ich finde keinen Zusammenhang zu meinem Beweis.

[mm] Z_G=\{ g \in G | gmg^{-1}=m \forall m \in G\} [/mm]

Wenn g [mm] \not\in Z_G [/mm] dann können also nicht alle m [mm] \in [/mm] G durch [mm] gmg^{-1}=m [/mm] dargestellt werden. Es gibt also ein m [mm] \in [/mm] G, welche nicht durch [mm] Z_g [/mm] dargestellt werden kann. Der Normalisator [mm] M_g=\{ m \in G | mgm^{-1} =g \}enthält [/mm] alle zu g konjugierten Elemente m. Da m nicht durch das Zentrum dargestellt werden kann ist [mm] Z_g [/mm] echte Teilmenge von [mm] M_g, [/mm] da m [mm] \in M_g [/mm] und m [mm] \not\in Z_g. [/mm] (?)

Mir fällt es schwer zu sehen wie ich die gegebenen Definition für meinen Beweis anwende. Ein Ansatz würde mir weiterhelfen.

lg

Bezug
                                        
Bezug
(echte) Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:57 Mo 15.11.2010
Autor: m0ppel

Hi, im Forum wurde diese Frage schon einmal bearbeitet, siehe hier: https://matheraum.de/read?t=107987&v=t

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]