www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1einseitiger Grenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - einseitiger Grenzwert
einseitiger Grenzwert < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einseitiger Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Di 19.04.2011
Autor: Igor1

Aufgabe
Sei f: D [mm] \to \IR [/mm] eine Funktion mit geeignetem Definitionsbereich D [mm] \subset \IR [/mm] .
Wir schreiben [mm] \limes_{x\ \to 0 +}f(x) [/mm] = g, falls für jede Nullfolge [mm] (x_{n})_{n} [/mm] in D mit [mm] x_{n} [/mm] > 0 gilt [mm] \limes_{n\ \to \infty}f(x_{n}) [/mm] = g.

Machen Sie sich klar, dass man o.B.d.A annehmen kann, dass [mm] (x_{n})_{n} [/mm] monoton fallend ist.



Hallo,

d.h man muss zeigen , dass falls für eine monoton fallende Nullfolge [mm] \limes_{n\ \to \infty}f(x_{n}) [/mm] = g gilt, dann gilt das auch für jede beliebige Nullfolge mit [mm] x_{n} [/mm] > 0.

Intuitiv ist das für mich relativ klar, dass es keinen Unterschied macht, wie eine Nullfolge gegen 0 von oben strebt (ob diese monoton ist oder "wild" verläuft).

Wie kann man das aber beweisen?


Gruss
Igor


        
Bezug
einseitiger Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mi 20.04.2011
Autor: rainerS

Hallo Igor!

> Sei [mm]f: D \to \IR[/mm] eine Funktion mit geeignetem
> Definitionsbereich [mm]D \subset \IR[/mm] .
>  Wir schreiben [mm]\limes_{x\ \to 0 +}f(x) = g[/mm], falls für jede
> Nullfolge [mm](x_{n})_{n}[/mm] in D mit [mm]x_{n} > 0[/mm] gilt [mm]\limes_{n\ \to \infty}f(x_{n}) = g[/mm] .
>  
> Machen Sie sich klar, dass man o.B.d.A annehmen kann, dass
> [mm](x_{n})_{n}[/mm] monoton fallend ist.
>  
>
> Hallo,
>  
> d.h man muss zeigen , dass falls für eine monoton fallende
> Nullfolge [mm]\limes_{n\ \to \infty}f(x_{n})[/mm] = g gilt, dann
> gilt das auch für jede beliebige Nullfolge mit [mm]x_{n}[/mm] > 0.
>  
> Intuitiv ist das für mich relativ klar, dass es keinen
> Unterschied macht, wie eine Nullfolge gegen 0 von oben
> strebt (ob diese monoton ist oder "wild" verläuft).
>
> Wie kann man das aber beweisen?

Du könntest überprüfen, ob es immer eine monoton fallende Teilfolge gibt.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]