www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikelektr. feld einer hohlkugel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - elektr. feld einer hohlkugel
elektr. feld einer hohlkugel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

elektr. feld einer hohlkugel: Frage
Status: (Frage) beantwortet Status 
Datum: 20:48 Do 14.04.2005
Autor: fretchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


ich habe die folgende aufgabe gekriegt:
Man berechne das elektr. Feld einer Kugelschale(innerer radius Ri, äußerer Radius Ra, Raumladungsdichte Rho(r)=a*r, für Ri<r>Ra mit a=const.)
So jetzt weiß ich dass
im Punkt R das Feld

[mm] E(R)=\integral_{V} \frac{ar}{4\pi \varepsilon_{0} (|R-r|)^{2}}dv \vec{e_{r}} [/mm]

wie jetzt weiter mit dem raumintegral?
also ich komme halt mit dem vektoren hier nicht zurecht


        
Bezug
elektr. feld einer hohlkugel: Kugelkooerdinaten!
Status: (Antwort) fertig Status 
Datum: 21:58 Do 14.04.2005
Autor: leduart

Hallo
dV [mm] =r^{2}*sin\teta*dr *d\phi*d\teta [/mm]
r von [mm] R_{i} [/mm] bis R, [mm] \phi [/mm] von 0 bis [mm] 2\pi [/mm] ; [mm] \teta [/mm] von 0 bis [mm] \pi [/mm]
Braucht man bei allen Kugelberechnungen!
Gruss leduart

Bezug
                
Bezug
elektr. feld einer hohlkugel: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:15 Fr 15.04.2005
Autor: fretchen

das ist mir ja schon klar, ich komme halt bei der eigentlichen integration nicht weiter, da ich hier irgendwelche vektoren drinne habe die sich so komisch verhalten, wenn ich das richtig sehe.
ich habe ja R, den vektor vom ursprung vom Ort im Feld und r, den vektor zum  ort der ladung, jetzt werden die verknüpft und dann entsteht ein sehr ungemütliches integral oder?

Bezug
                        
Bezug
elektr. feld einer hohlkugel: keine Vektoren im Integral!
Status: (Antwort) fertig Status 
Datum: 20:05 So 17.04.2005
Autor: leduart

Hallo


> das ist mir ja schon klar, ich komme halt bei der
> eigentlichen integration nicht weiter, da ich hier
> irgendwelche vektoren drinne habe die sich so komisch
> verhalten, wenn ich das richtig sehe.
>  ich habe ja R, den vektor vom ursprung vom Ort im Feld und
> r, den vektor zum  ort der ladung, jetzt werden die
> verknüpft und dann entsteht ein sehr ungemütliches integral
> oder?

Ja, mit den Vektoradditionen wird es recht kompliziert. Wenn du deine Formel nicht benutzen musst, solltest du das Potential in Abhängigkeit von R berechnen, da sich Potentiale einfach addieren. Wenn man das für eine dünne Hohlkugel ausführt, findet man, dass es dasselbe ist, als wenn die Gesamtladung der Hohlkugel im Mittelpunkt läge, Danach mußt du nur noch die GesamtLadung deiner dicken Hohlkugel berechnen und bist fertig. (Da das potential kugelsymetrisch rauskommt ist
[mm] \vec{E}(R)= \bruch{dV}{dR}* \vec{e_{R}} [/mm]
Hilft dir das, sonst überleg ich noch mal weiter!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]