www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraendliche Körpererweiterung zei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - endliche Körpererweiterung zei
endliche Körpererweiterung zei < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche Körpererweiterung zei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Sa 27.10.2012
Autor: Kaffeetrinker

Aufgabe
Es sei [mm] \mathbb{Q}(T) [/mm] ={f/g, f,g [mm] 2\in\mathbb{Q}[T],g\neq [/mm] 0}
der Quotientenkörper des Polynomringes [mm] \mathbb{Q[}T] [/mm] mit der Unbestimmten T. Sei [mm] L=\mathbb{Q}(T) [/mm] und K = [mm] \mathbb{Q}(T^3)\leq [/mm]  L der durch Adjunktion von [mm] T^3 [/mm] erzeugte Teilkörper.
Zeigen Sie:
a.) L/K ist eine endliche Erweiterung
b.) Bestimmen Sie das Minimalpolynom von 1+T [mm] \in [/mm] L über K.

Lieber Matheraum,

nun, ich scheitere an Punkt a. Meine Vermutung ist es, dass [mm] {1,T,T^{2}} [/mm] eine Basis für L über K darstellt, allerdings habe ich ein Problem, dies zu zeigen. In K sind die Elemente ja [mm] 1,T^{3}, T^{6}, \frac{1}{t^{3}}, \frac{1}{t^{6}},..., [/mm] , sowie alle Linearkombinationen mit Koeffizienten aus [mm] \mathbb{Q} [/mm] davon.

Nun weiß ich aber nicht, wie ich ein Polynom wie [mm] \frac{1}{T^{2}-1}\in [/mm] L damit "erzeugen" kann. Ich hab mir schon überlegt, dass ich die Nenner der Polynome in L immer in Linearfaktoren zerlege, habe aber dann das Problem, dass die Linearfaktoren ja nicht aus Elementen aus [mm] \mathbb{Q} [/mm] bestehen müssen..

Eine "bessere" endliche Basis fällt mir auch nicht ein..

Kann mir irgendjemand dabei helfen?


Ich bedanke mich schon mal,
lg Kaffeetrinker


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
endliche Körpererweiterung zei: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Sa 27.10.2012
Autor: teo

Hallo,

dir ist klar, dass [mm] $\IQ(T^3) \subseteq \IQ(T)$ [/mm] gilt. Was du zeigen willst ist doch, dass [mm] $[\IQ(T):\IQ(T^3)] [/mm] = 3$ ist. Wie schaut denn das Minimalpolynom von T in [mm] $\IQ(T^3)[x]$ [/mm] aus?

Grüße

Bezug
                
Bezug
endliche Körpererweiterung zei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Sa 27.10.2012
Autor: Kaffeetrinker

Vielen Dank für deine Antwort!
Das Minimalpolynom ist [mm] X^{3}-T^{3}, [/mm] hat also Grad 3.
Nun meine Frage: inwiefern hilft mir das? [mm] \mathbb{Q}(T) [/mm] ist ja nicht der von [mm] \mathbb{Q} [/mm] und T erzeugte Körper, sondern ein Quotientenkörper. Oder gibt es da etwas, was ich übersehe?

lg Kaffeetrinker

Bezug
                        
Bezug
endliche Körpererweiterung zei: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Sa 27.10.2012
Autor: teo

[mm] \IQ(T) [/mm] ist der Körper [mm] \IQ [/mm] zu dem du T einfach noch adjungierst (dazunimmst). Sei $f = [mm] x^3 [/mm] - [mm] T^3$ [/mm] dann gilt offensichtlich $f [mm] \in \IQ(T^3)[x]$ [/mm] wobei dies der Polynomring mit Koeffizienten in [mm] \IQ(T^3) [/mm] ist. Nun musst du noch zeigen, dass f das Minimalpolynom von T über [mm] \IQ(T^3) [/mm] ist! Dann gilt doch, wegen [mm] $\IQ(T^3) \subseteq \IQ(T)$, [/mm] und $[ [mm] \IQ(T): \IQ(T^3)] [/mm] = deg(f) =3$, dass die Körpererweiterung vom Grad 3 ist und somit insbesondere endlich! Daraus folgt nun, dass [mm] $\{1, T,T^ 2\} [/mm] $eine [mm] \IQ(T^3)- [/mm] Basis von [mm] \IQ(T) [/mm] ist!

Grüße

Bezug
                                
Bezug
endliche Körpererweiterung zei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Sa 27.10.2012
Autor: teo

Hallo, du musst auch noch zeigen, dass $T [mm] \notin \IQ(T)$ [/mm] ist, um damit folgern zu können, dass $[ [mm] \IQ(T): \IQ(T^3)] [/mm] > 1$ ist! Erst dann kommt das Minimalpolynom...

Bezug
                                        
Bezug
endliche Körpererweiterung zei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:48 So 28.10.2012
Autor: Kaffeetrinker

Vielen Dank für diese äußerst schnelle und kompetente Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]