www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperendliche Ordnung, komplex,
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - endliche Ordnung, komplex,
endliche Ordnung, komplex, < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche Ordnung, komplex,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Fr 14.11.2014
Autor: sissile

Aufgabe
Es sei G eine abelsche Gruppe. Beweisen Sie, dass [mm] H:=\{a \in G| ord(a) \mbox{ist endlich }\}eine [/mm] Untergruppe von G ist.
Wie sieht diese Untergruppe H aus, wenn [mm] G=\{z \in \IC | |z|=1 \} [/mm] mit der Multiplikation komplexer Zahlen?

Hallo zusammen,

Der Beweis macht mir keine Schwiergkeiten aber das komplexe Beispiel!

ZZ.: [mm] H:=\{a \in G| ord(a) \mbox{ist endlich }\} \le [/mm] G
-) ord(e)=1 -> e [mm] \in [/mm] H also [mm] H\not=\emptyset [/mm]
-) [mm] H\subseteq [/mm] G
-) a, b [mm] \in [/mm] H, d.h. ord(a)=t < [mm] \infty, [/mm] ord(b)=s [mm] <\infty [/mm]
[mm] e=ee=a^tb^s=(ab)^{ts} [/mm]
=> ord(ab) [mm] \le [/mm] ts < [mm] \infty [/mm]
=> ab [mm] \in [/mm] H
-) a [mm] \in [/mm] H
Schon gezeigt in anderen Bsp: [mm] ord(a)=ord(a^{-1}) [/mm]
=> [mm] a^{-1} \in [/mm] H


[mm] G=\{z \in \IC | |z|=1 \} [/mm]
H=?
Mir ist klar [mm] \{1,-1,i,-1\} \in [/mm] H
Aber wie zeig ich, dass das schon die einzigen sind(wie ich glaube)?

LG,
sissi

        
Bezug
endliche Ordnung, komplex,: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Fr 14.11.2014
Autor: UniversellesObjekt

Hallo,

es gibt eine (aus dem ersten Semester Analysis?) ziemlich bekannte Bezeichnung für komplexe Zahl mit $ [mm] z^n=1$. [/mm] (Wie nennt man eine positive reelle Zahl mit $ [mm] z^2=a [/mm] $? Das hier ist verwandt.)

Im übrigen ist die Gruppe viel größer als du vermutest.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
endliche Ordnung, komplex,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Fr 14.11.2014
Autor: sissile

Hallo,
Ach, darauf hätte ich selbst kommen müssen. Danke für´s aufmerksam machen!

Sei a [mm] \in [/mm] G, d.h. |a|=1
Dann ist die ord(a) endlich [mm] \gdw \exists [/mm] n [mm] \in \IN\setminus \{0\}: a^n=e=1 [/mm]

Die Gleichung [mm] a^n=1 [/mm] hat genau n komplexe Lösungen.
[mm] \partial_k [/mm] = [mm] e^{i \frac{2k \pi}{n}}, [/mm] k=0,1...,n-1 (Nach Analysis 1)

[mm] |\partial_k|^2 [/mm] = [mm] e^{i \frac{2k \pi}{n}} \overline{e^{i \frac{2k \pi}{n}}}=e^{i \frac{2k \pi}{n}-i\frac{2k \pi}{n}}=e^0=1 [/mm] => alle Lösungen auch in G

Also wissen wir schonmal, dass die komplexen Einheitswurzeln Elemente von H sind. Aber ob wir damit schon wissen, ob wir alle haben - da bin ich mir nicht sicher.

Bezug
                        
Bezug
endliche Ordnung, komplex,: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Sa 15.11.2014
Autor: UniversellesObjekt

Naja, du hast ja jetzt $ [mm] a\in H\iff a^n=1$ [/mm] für ein passendes $ n $. Und dies ist doch gerade die Definition von "$ a $ ist eine $ n $-te Einheitswurzel".

Liebe Grüße,
UniversellesObjekt

Bezug
                                
Bezug
endliche Ordnung, komplex,: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 Sa 15.11.2014
Autor: sissile

Danke ;=)
LG,
sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]