www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale Sprachenendlicher automat
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Formale Sprachen" - endlicher automat
endlicher automat < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endlicher automat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Sa 31.01.2009
Autor: tugba

Aufgabe 1
Sei die Sprache L definiert wie folgt
[mm] L:={w\in\{ a,b \}^{\*}| w=a^{\*} oder |w|_{b} mod 3=1}. [/mm] Geben sie einen deterministischen endlichen Automaten M an, für die gilt L(M)=L

Aufgabe 2
Ist die Sprache L auch vom Typ2? Wenn Ja, geben Sie eine kontexfreie Grammatik an, die L erzeugt. falls nein, warum ist sie nicht kontexfrei?

Hallo,
Ich habe soweit die Aufgaben gelöst, und möchte wissen ob die Antworten auch so richtig sind.

zu Aufgabe1:
M=( Zustände={z0, z1, z2, z3}, Eingabealphabet={a,b},            
   überführungsfunktion={ [mm] \delta(z0,a)=z0, \delta(z0,b)=z1, [/mm]
[mm] \delta(z1,a)=z1, [/mm]  
[mm] \delta(z1,b)=z2, [/mm]  
[mm] \delta(z2,a)=z2, [/mm]
[mm] \delta(z2,b)=z3, [/mm]
[mm] \delta(z3,a)=z3, [/mm]
[mm] \delta(z3,b)=z1 [/mm] }, Satrtzustand={z0}, endzustand={z0,z1})

zu Aufgabe2:
Die Sparche ist kontexfrei, da wir in Aufgabe1 einen endlichen Automaten gezeichnet haben, heißt es, dass die Sprache regulär bzw. vom Typ3 ist und wie wir wissen ist Typ 3 Sprachen echte untermengen vom Typ 2 Sprachen.
Die Garmmatik lautet dann:
G:=({S,A},{a,b},P,S) mit der Regelmenge
P={ [mm] S\to\varepsilon, S\toA, A\to [/mm] aA|aAa|a|b }


        
Bezug
endlicher automat: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Sa 31.01.2009
Autor: bazzzty


> Sei die Sprache L definiert wie folgt
>   [mm]L:={w\in\{ a,b \}^{\*}| w=a^{\*} oder |w|_{b} mod 3=1}.[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> zu Aufgabe1:
>  M=( Zustände={z0, z1, z2, z3}, Eingabealphabet={a,b},      
>        
> überführungsfunktion={ [mm]\delta(z0,a)=z0, \delta(z0,b)=z1,[/mm]
> [mm]\delta(z1,a)=z1,[/mm]  
> [mm]\delta(z1,b)=z2,[/mm]  
> [mm]\delta(z2,a)=z2,[/mm]
> [mm]\delta(z2,b)=z3,[/mm]
> [mm]\delta(z3,a)=z3,[/mm]
>   [mm]\delta(z3,b)=z1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}, Satrtzustand={z0},

> endzustand={z0,z1})

Ja, bestens.


> zu Aufgabe2:
> Die Sparche ist kontexfrei, da wir in Aufgabe1 einen
> endlichen Automaten gezeichnet haben, heißt es, dass die
> Sprache regulär bzw. vom Typ3 ist und wie wir wissen ist
> Typ 3 Sprachen echte untermengen vom Typ 2 Sprachen.

Ja, schöne Begründung.

>  Die Garmmatik lautet dann:
>  G:=({S,A},{a,b},P,S) mit der Regelmenge
> P={ [mm]S\to\varepsilon, S\toA, A\to[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

aA|aAa|a|b }

Ich verstehe nicht, wie Du auf so eine Lösung kommst. Diese Grammatik läßt nur Wörter mit genau einem [mm]b[/mm] zu, aber zum Beispiel nicht [mm]bbbb[/mm].

Mein Tipp: Wenn Du schon weißt, dass die Sprache regulär ist, dann schreib doch eine reguläre Grammatik! Auch wenn das noch nicht explizit dran war: Du kannst aus den Zuständen und Übergängen des Automaten ablesen, wie der etwa aussehen muss!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]