www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperendlicher erweiterungskörper
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - endlicher erweiterungskörper
endlicher erweiterungskörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endlicher erweiterungskörper: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 16:57 Mo 02.07.2012
Autor: Schadowmaster

moin,

Auf einem Übungsblatt hatte ich folgende Aufgabe:
Aufgabe 1
Seien $K,L$ endliche Körper und $K [mm] \subseteq [/mm] L$.
Zeigen Sie, dass ein [mm] $\alpha \in [/mm] L$ existiert mit [mm] $K[\alpha] [/mm] = L$.


Diese hab ich bereits wie folgt gelöst:
Da $L$ endlich ist, ist $E(L)$ (die Einheitengruppe des Körpers $L$) zyklisch.
Nehmen wir uns einen Erzeuger [mm] $\alpha$, [/mm] so ist (nachrechnen) $L = [mm] K[\alpha]$. [/mm]

Die Frage, die sich nun gestellt hat, ist: Gilt auch die Umkehrung?
Also gilt folgende Aussage:

Aufgabe 2
Sei $K$ ein endlicher Körper und $L = [mm] K[\alpha]$ [/mm] für ein [mm] $\alpha \not\in [/mm] K$, das algebraisch über $K$ ist. Dann wird die Einheitengruppe von $L$ von [mm] $\alpha$ [/mm] erzeugt.



Man muss hier [mm] $\alpha \not\in [/mm] K$ nehmen, denn sonst könnte man etwa die 1 zu $K$ adjungieren und hätte ein Gegenbeispiel.
Überdies sollte [mm] $\alpha$ [/mm] natürlich algebraisch über $K$ sein, damit $L$ endlich und ein Körper wird.
Leider fällt mir hier überhaupt nicht ein, wie ich die Aussage zeigen könnte.
Alle bisherigen Versuche sind gescheitert, in erster Linie daran, dass ich keine wirkliche Aussage über $|E(L)| = [mm] p^m [/mm] -1$ für eine Primzahl $p$ und ein $m [mm] \in \IN$ [/mm] treffen kann, insbesondere weiß ich nicht welche Teiler diese Zahl alles hat (die müsste ich ja als Elementordnungen für [mm] $\alpha$ [/mm] ausschließen).
Es wäre deshalb nett, wenn mir jemand (der die Aussage vielleicht kennt?) wenigstens sagen könnte ob sie stimmt oder ob ich mich auf die Suche nach einem Gegenbeispiel machen sollte; gegen ein paar Tipps hätte ich natürlich auch nichts einzuwenden.^^

thx schonmal.

lg

Schadow

        
Bezug
endlicher erweiterungskörper: lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Di 03.07.2012
Autor: Schadowmaster

So, eine Nacht drüber zu schlafen hilft einem echt die trivialsten Lösungen zu sehen:
Mit der klassischen Notation $i := [mm] \sqrt{-1}$ [/mm] gilt $i [mm] \not\in \IZ_7$. [/mm] Definiere $L := [mm] \IZ_7[i]$, [/mm] dann ist $|E(L)|=48$, aber $ord(i) = 4 [mm] \neq [/mm] 48$, damit insbesondere $E(L) [mm] \neq \langle [/mm] i [mm] \rangle$. [/mm]

Bezug
                
Bezug
endlicher erweiterungskörper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Di 03.07.2012
Autor: felixf

Moin Schadow,

ich seh das erst jetzt, aber: ja, die Aussage gilt nicht ;-)

> So, eine Nacht drüber zu schlafen hilft einem echt die
> trivialsten Lösungen zu sehen:
>  Mit der klassischen Notation [mm]i := \sqrt{-1}[/mm] gilt [mm]i \not\in \IZ_7[/mm].
> Definiere [mm]L := \IZ_7[i][/mm], dann ist [mm]|E(L)|=48[/mm], aber [mm]ord(i) = 4 \neq 48[/mm], [/i][/mm]
> [mm][i]damit insbesondere [mm]E(L) \neq \langle i \rangle[/mm]. [/i][/mm]

Genau.

Allgemein geht das mit [mm] $\IF_q$ [/mm] mit $q [mm] \not\equiv [/mm] 1 [mm] \pmod{4}$ [/mm] und $q$ ungerade.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]