endlicher kommutativer Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:08 Mo 28.10.2013 | Autor: | x3738x |
Aufgabe | Die Potenzmenge [mm] \mathcal{P}(M) [/mm] einer endlichen Menge M bildet mit den Operationen
A+B := A [mm] \Delta [/mm] B = {x [mm] \in [/mm] M | x [mm] \in [/mm] (A [mm] \cup [/mm] B) \ (A [mm] \cap [/mm] B)},
A*B := A [mm] \cap [/mm] B
für alle A,B [mm] \in \mathcal{P}(M)
[/mm]
einen endlichen kommutativen Ring mit Einselement (Das ist nicht zu beweisen!).
Es sei M im folgenden eine nichtleere, endliche Menge.
(a) Bestimmen Sie für die Gruppe [mm] (\mathcal{P}(M),+) [/mm] das neutrale Element und zu jedem Element sein Inverses.
(b) Bestimmen Sie für den Ring [mm] (\mathcal{P}(M),+,*) [/mm] das Einselement, sowie alle Einheiten und alle Nullteiler. |
Hallo,
ich bin neu hier.
In der Uni haben wir gerade die Aufgabe und ich bin mir total unsicher, ob das so korrekt gelöst ist.
Folgendermaßen ist meine bisherige Lösung:
___________________________________
(a)
NEUTRALES ELEMENT:
Es muss gelten A+B = A
(A [mm] \cup [/mm] B) \ (A [mm] \cap [/mm] B)
[mm] \gdw \overline{(A \cap B)} \cap [/mm] (A [mm] \cup [/mm] B)
[mm] \gdw (\overline{A} \cup \overline{B}) \cap [/mm] (A [mm] \cup [/mm] B)
Annahme B = [mm] \emptyset
[/mm]
zu zeigen: [mm] A+\emptyset [/mm] = A
[mm] (\overline{A} \cup \overline{\emptyset}) \cap [/mm] (A [mm] \cup \emptyset) [/mm] = A
[mm] \gdw \mathcal{P}(M) \cap [/mm] A = A
Wahre Aussage, da A [mm] \in \mathcal{P}(M).
[/mm]
[mm] \Rightarrow \emptyset [/mm] ist neutrales Element.
INVERSES:
Es muss gelten: A + B = [mm] \emptyset
[/mm]
(A [mm] \cup [/mm] B) \ (A [mm] \cap [/mm] B) = [mm] \emptyset
[/mm]
[mm] \gdw [/mm] (A [mm] \cup [/mm] B) [mm] \cap \overline{(A \cap B)} [/mm] = [mm] \emptyset
[/mm]
[mm] \gdw [/mm] (A [mm] \cup [/mm] B) [mm] \cap (\overline{A} \cup \overline{B}) [/mm] = [mm] \emptyset
[/mm]
Annahme: A = B
(A [mm] \cup [/mm] A) [mm] \cap (\overline{A} \cup \overline{A}) [/mm] = [mm] \emptyset
[/mm]
[mm] \gdw [/mm] A [mm] \cap \overline{A} [/mm] = [mm] \emptyset, [/mm] wahre Aussage
[mm] \Rightarrow [/mm] Inverses von A = [mm] \overline{A}
[/mm]
(b)
EINSELEMENT:
A * B := A [mm] \cap [/mm] B
Es soll gelten: A [mm] \cap [/mm] B = A
[mm] \gdw [/mm] A [mm] \cap [/mm] M = A, da laut (a) gilt: A [mm] \in \mathcal{P}(M)
[/mm]
[mm] \gdw [/mm] A = A, wahre Aussage.
[mm] \Rightarrow [/mm] M ist Einselement
EINHEITEN
Es soll gelten: A * B = M
A [mm] \cap [/mm] B = M
[mm] \Rightarrow [/mm] Es gibt keine Einheiten, da M mächtigste Menge ist. A, B [mm] \not= [/mm] M. A [mm] \cap [/mm] B = M würde nur dann gelten, wenn A, B = M. Widerspruch.
NULLTEILER
Es soll gelten: A * B = 0
A [mm] \cap [/mm] B = [mm] \emptyset
[/mm]
[mm] \gdw [/mm] A [mm] \cap \overline{A} [/mm] = [mm] \emptyset, [/mm] wahre Aussage.
[mm] \Rightarrow [/mm] Nullteiler sind alle Elemente aus [mm] \overline{A}
[/mm]
___________________________________
Ich würd die Lösung hier gern einfach mal zum Verifizieren reinstellen.
Stimmt das, was ich gemacht habe? Was ist falsch?
Danke für eure kompetente Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hey,
als erstes:
> (A $ [mm] \cup [/mm] $ B) \ (A $ [mm] \cap [/mm] $ B)
> $ [mm] \gdw \overline{(A \cap B)} \cap [/mm] $ (A $ [mm] \cup [/mm] $ B)
> $ [mm] \gdw (\overline{A} \cup \overline{B}) \cap [/mm] $ (A $ [mm] \cup [/mm] $ B)
Du hast hier Mengen stehen.
Diese sind aller höchstens gleich, niemals äquivalent.
Also mach bitte logische Aussagen daraus oder ersetze das [mm] $\gdw$ [/mm] durch ein $=$.
Die 0 sieht gut aus.
Bei den Inversen ist am Schluss ein Problem aufgetreten: Du setzt $A=B$ und kommst dann zu einem schönen Ergebnis, wieso soll auf einmal [mm] $\overline{A}$ [/mm] das Inverse von $A$ sein?
Berechne mal [mm] $A+\overline{A}$ [/mm] und guck was passiert.
Die 1 ist wieder ok.
Bei den Einheiten und Nullteilern guck dir nochmal genau die Definitionen an, du hast ein paar Randfälle vergessen, auch wenn der allgemeine Fall so ok ist.
lg
Schadow
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:28 Di 29.10.2013 | Autor: | x3738x |
Hey, hab ganz herzlichen Dank für die Antwort.
zu (a)
Das Inverse ist natürlich nicht [mm] \overline{A}, [/mm] sondern A.
zu (b)
M selbst ist die einzige Einheit und Nullteiler ist [mm] \mathcal{P}(M) [/mm] \ { [mm] \emptyset, [/mm] M }
Danke für deine Mühe, hast mir wirklich geholfen!
|
|
|
|