www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigeserwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - erwartungswert
erwartungswert < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erwartungswert: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:15 Sa 04.06.2011
Autor: kioto

das steht im buch:
[mm] E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0} [/mm]

woher kommt  [mm] \bruch{x^2}{2}? [/mm]

        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Sa 04.06.2011
Autor: kamaleonti

Hallo,
> das steht im buch:
>  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
>  
> woher kommt  [mm]\bruch{x^2}{2}?[/mm]  

Wenn du uns nicht verrätst, was f ist, dann können wir nur raten, worum es sich handelt.

Ich kann dir jedoch sagen, dass aus [mm] \integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx} [/mm] folgt, dass  [mm] \integral_{0}^{10}{f(x) dx}=0 [/mm]

LG


Bezug
                
Bezug
erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Sa 04.06.2011
Autor: kioto





> Hallo,
>  > das steht im buch:

>  >  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
>  
> >  

> > woher kommt  [mm]\bruch{x^2}{2}?[/mm]  
> Wenn du uns nicht verrätst, was f ist, dann können wir
> nur raten, worum es sich handelt.
>  

schuldigung.....

f(x) = [mm] \bruch{1}{10} [/mm] für 0 < x < 10

> Ich kann dir jedoch sagen, dass aus [mm]\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}[/mm]
> folgt, dass  [mm]\integral_{0}^{10}{f(x) dx}=0[/mm]
>  
> LG
>  


Bezug
                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Sa 04.06.2011
Autor: kamaleonti


> > Hallo,
>  >  > das steht im buch:

>  >  >  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
> f(x) = [mm]\bruch{1}{10}[/mm] für 0 < x < 10

Dann gilt aber:

    [mm] \integral_{0}^{10}{\frac{1}{10} dx}=\left[\frac{x}{10}\right]_0^{10}=1 [/mm]

LG

Bezug
                                
Bezug
erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Sa 04.06.2011
Autor: kioto


> > > Hallo,
>  >  >  > das steht im buch:

>  >  >  >  [mm]E(X)=\integral_{0}^{10}{f(x) dx}= \bruch{1}{10}\integral_{0}^{10}{f(x) dx}= \bruch{1}{10} \* \bruch{x^2}{2} |_{0}[/mm]
>  
> > f(x) = [mm]\bruch{1}{10}[/mm] für 0 < x < 10
>  
> Dann gilt aber:
>
> [mm]\integral_{0}^{10}{\frac{1}{10} dx}=\left[\frac{x}{10}\right]_0^{10}=1[/mm]
>  

heißt es, [mm] \bruch{x^2}{2} [/mm] ist hier falsch?

> LG


Bezug
                                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 04.06.2011
Autor: schachuzipus

Hallo nochmal,

siehe meine andere Antwort.

Du benutzt eine falsche Formel!

Gruß

schachuzipus


Bezug
                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 04.06.2011
Autor: schachuzipus

Hallo kioto,

deine Formel ist falsch, richtig lautet sie:

[mm]E(X)=\int\limits_{-\infty}^{\infty}{\red{x}\cdot{}f(x) \ dx}[/mm], wobei [mm]f[/mm] die Dichte von [mm]X[/mm] ist.

Hier ist [mm]f[/mm] nur auf dem Intervall [mm](0,10)[/mm] definiert (bzw. überall sonst [mm] $\equiv [/mm] 0$), daher die Grenzen.

Weiter ist hier also [mm]E(X)=\int\limits_{0}^{10}{x\cdot{}f(x) \ dx}=\int\limits_{0}^{10}{\frac{1}{10}x \ dx}=\frac{1}{10}\cdot{}\int\limits_{0}^{10}{x \ dx}=\frac{1}{10}\cdot{}\left[\frac{x^2}{2}\right]_0^{10}[/mm]

Gruß

schachuzipus


Bezug
                                
Bezug
erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Sa 04.06.2011
Autor: kioto


> Hallo kioto,
>  
> deine Formel ist falsch, richtig lautet sie:
>  
> [mm]E(X)=\int\limits_{-\infty}^{\infty}{\red{x}\cdot{}f(x) \ dx}[/mm],
> wobei [mm]f[/mm] die Dichte von [mm]X[/mm] ist.

danke, das seh ich auch gerade, habs falsch abgetippt

>  
> Hier ist [mm]f[/mm] nur auf dem Intervall [mm](0,10)[/mm] definiert, daher
> die Grenzen.
>  
> Weiter ist hier also [mm]E(X)=\int\limits_{0}^{10}{x\cdot{}f(x) \ dx}=\int\limits_{0}^{10}{\frac{1}{10}x \ dx}=\frac{1}{10}\cdot{}\int\limits_{0}^{10}{x \ dx}=\frac{1}{10}\cdot{}\left[\frac{x^2}{2}\right]_0^{10}[/mm]
>  

aber warum [mm] \bruch{x^2}{2}?? [/mm] woher kommt das?

> Gruß
>  
> schachuzipus
>  


Bezug
                                        
Bezug
erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Sa 04.06.2011
Autor: kamaleonti

Hallo kioto,
> aber warum [mm]\bruch{x^2}{2}??[/mm] woher kommt das?

Das ist eine elementare Stammfunktion der Funktion f(x)=x. Das solltest du unbedingt wissen.

LG

Bezug
                                                
Bezug
erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Sa 04.06.2011
Autor: kioto


> Hallo kioto,
>  > aber warum [mm]\bruch{x^2}{2}??[/mm] woher kommt das?

>  
> Das ist eine elementare Stammfunktion der Funktion f(x)=x.
> Das solltest du unbedingt wissen.
>  

ah....... stimmt ja, danke danke, das war ja peinlich von mir....

> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]