erzeugte Ideal, Aussehen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:55 Mi 26.11.2014 | Autor: | sissile |
Aufgabe | Es sei R ein Ring und [mm] X\subseteq [/mm] R. Beweisen Sie
[mm] (X)=\{ \sum_{i=1}^I \alpha_i x_i \beta_i + \sum_{j=1}^J \gamma_j y_j + \sum_{k=1}^K u_k \delta_k + \sum_{l=1}^L n_l v_l|
\alpha_i, \beta_i \in R \mbox{und} x_i \in X \mbox{für} 1\le i \le I
\gamma_j \in R \mbox{und} y_j \in X \mbox{für} 1\le j \le J
\delta_k \in R \mbox{und} u_k \in X \mbox{für} 1\le k \le K
n_l \in Z \mbox{und} v_l \in X \mbox{für} 1\le l \le L \} [/mm] |
Hallo,
Der Ring muss weder kommutativ, eine 1 oder Inverse haben!
Ich bezeichne die rechte Seite als M.
-) (X) [mm] \subseteq [/mm] M
1) ZZ.: M ist ein Ideal
2) ZZ.: X [mm] \subseteq [/mm] M
3) ZZ.: Aus X [mm] \subseteq [/mm] M folgt [mm] (X)\subseteq [/mm] M
1)
Sei r [mm] \in [/mm] R beliebig aber fest
ZZ.: r*M [mm] \in [/mm] M, M*r [mm] \in [/mm] M
[mm] r*(\sum_{i=1}^I \alpha_i x_i \beta_i [/mm] + [mm] \sum_{j=1}^J \gamma_j y_j [/mm] + [mm] \sum_{k=1}^K u_k \delta_k [/mm] + [mm] \sum_{l=1}^L n_l v_l)
[/mm]
Distributivität&Assoziativgesetz
[mm] =\sum_{i=1}^I [/mm] (r [mm] \alpha_i) x_i \beta_i [/mm] + [mm] \sum_{j=1}^J [/mm] (r [mm] \gamma_j) y_j [/mm] + [mm] \sum_{k=1}^K [/mm] (r [mm] u_k) \delta_k [/mm] + [mm] \sum_{l=1}^L [/mm] r [mm] n_l v_l
[/mm]
Nutze Rechenregel (na)b=a*(nb) für alle n [mm] \in \IZ [/mm] und für alle a,b [mm] \in [/mm] R
= [mm] \sum_{i=1}^I [/mm] (r [mm] \alpha_i) x_i \beta_i [/mm] + [mm] \sum_{j=1}^J [/mm] (r [mm] \gamma_j) y_j [/mm] + [mm] \sum_{k=1}^K [/mm] (r [mm] u_k) \delta_k [/mm] + [mm] \sum_{l=1}^L n_l [/mm] (r [mm] v_l)
[/mm]
Nun ist (r [mm] \alpha_i), \beta_i \in [/mm] R
r [mm] \gamma_j \in [/mm] R
Es gilt X [mm] \subseteq [/mm] (X) daher folgt r [mm] u_k \in [/mm] (X) sowie r [mm] v_l \in [/mm] (X)
Aber wie soll hier folgen, dass r [mm] u_k \in [/mm] X sowie r [mm] v_l \in [/mm] X?
LG,
sissi
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Fr 28.11.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|