www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpererzeugte R Moduln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - erzeugte R Moduln
erzeugte R Moduln < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erzeugte R Moduln: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:28 Mo 02.05.2011
Autor: Nadia..

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $R$ ein euklidischer Ring und seien $V_1,V_2$ zwei nichttriviale endlich erzeugte R-Moduln.
Sei $l_i$ die Anzahl der Elementarteiler von $V_i,i\in \{1,2\}$.

1. Man begründe, dass $V_1 \times V_2$ höchstens $l_1+l_2$ Elementarteiler hat.
2. Man gebe ein Beispiel an, wo $V_1\times V_2$ genau $l_2+l_2$ Elementarteiler hat.
3.Man gebe ein Beispiel an, wo $V_1\times V_2$ weniger als $l_1+l_2$ Elementarteiler hat.
4.Ist es möglich, dass $V_1 \times V_2$ genau $l_1$ Elementarteiler hat.


zu 1.
Die Begründung ist

Sei $n\in N,s\in N,V_1 \cong \frac{\mathbb{R}}{d_1}\times\frac{\mathbb{R}}{d_2}\times..\frac{\mathbb{R}}{d_n}},V_2= \cong \frac{\mathbb{R}}{d_s_1}\times\frac{\mathbb{R}}{d_s_2}\times..\frac{\mathbb{R}}{d_s_n}}\Rightarrow V_1 \times V_2 =  \frac{\mathbb{R}}{d_1}\times\frac{\mathbb{R}}{d_2}\times..\frac{\mathbb{R}}{d_n}}\times\frac{\mathbb{R}}{ds_1}\times\frac{\mathbb{R}}{ds_2}\times..\frac{\mathbb{R}}{ds_n}}$
Das sind dann laut Definition höchstens $l_1+l_2$ Elementarteiler,weobei $d_1..d_n,d_s_1..d_s_n$ die Elementarteiler von $V_1$ bzw. $V_2$

Zu 2.
Sein $V_1$ R Modul mit Präsentierungsmatrix (2),$V_2$ mit Präsentierungsmatrix $(3)$.Dann sind das gerade die Elementarteiler.
Also
$V_1\times V_2 = 2 \times 3= l_1+l_2$

zu 3.

seien 3,6 die Elementarteiler von $V_1$, 18 die Elementarreiler von V_2
dann ist(3,6) wegen 18 = 3 x 6 , die Elementarteiler von $V_1\times V_2$

zu 4. Ja es ist möglich besinder bei $V_1=V_2$

Vielen Dank im voraus




        
Bezug
erzeugte R Moduln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Mi 04.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]