erzeugter Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:47 Di 30.12.2014 | Autor: | Ladon |
Hallo,
eine normale Untergruppe [mm] $N\vartriangleleft [/mm] G$ heißt von [mm] $S\subseteq [/mm] G$ erzeugter Normalteiler gdw N der Schnitt aller Normalteiler von G, die S enthalten, ist. Dies ist eine recht analoge Definition zu der einer erzeugten Untergruppe.
In der folgenden Formulierung des Satzes (van Kampen) wird von der normalen Untergruppe gesprochen, die durch gewisse Elemente [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}$ [/mm] erzeugt wird (bitte Kontext im Link nachlesen).
Kann ich hier den Darstellungssatz (s.u.) anwenden, wie er bei einer von einer Menge [mm] $X\subseteq [/mm] G$ erzeugten Untergruppe [mm] $U\le [/mm] G$ genutzt wird?
Darstellungssatz: Für alle [mm] $\emptyset\neq X\subseteq [/mm] G$ mit G Gruppe: [mm] :=\{x_1\cdots x_n|x_1,...,x_n\in X\cup X^{-1}, n\in\IN\}.
[/mm]
Eine weitere Frage bezieht sich auf obigen Satz: Ich halte die Formulierung für Fehlerhaft, wenn man Hatcher S.43 (PDF-Seite: 52) zugrundelegt. In dem Satz auf wikiversity ist [mm] g\in\pi_1(U_\alpha\cap U_\beta). [/mm] Damit kann [mm] i^{\alpha\beta} [/mm] keine Einbettung sein, die von [mm] U_\alpha\cap U_\beta [/mm] nach [mm] U_\alpha [/mm] abbildet! Weiterer Fehler: Es muss [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}$ [/mm] nicht [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g^{-1})$ [/mm] heißen.
Sind diese Fehlerbemerkungen korrekt?
Ich freue mich auf eure Antworten
MfG
Ladon
|
|
|
|
> Hallo,
>
> eine normale Untergruppe [mm]N\vartriangleleft G[/mm] heißt von
> [mm]S\subseteq G[/mm] erzeugter Normalteiler gdw N der Schnitt aller
> Normalteiler von G, die S enthalten, ist. Dies ist eine
> recht analoge Definition zu der einer erzeugten
> Untergruppe.
> In der folgenden Formulierung des
> Satzes (van Kampen)
> wird von der normalen Untergruppe gesprochen, die durch
> gewisse Elemente [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> erzeugt wird (bitte Kontext im Link nachlesen).
>
> Kann ich hier den Darstellungssatz (s.u.) anwenden, wie er
> bei einer von einer Menge [mm]X\subseteq G[/mm] erzeugten
> Untergruppe [mm]U\le G[/mm] genutzt wird?
> Darstellungssatz: Für alle [mm]\emptyset\neq X\subseteq G[/mm] mit
> G Gruppe: [mm]:=\{x_1\cdots x_n|x_1,...,x_n\in X\cup X^{-1}, n\in\IN\}.[/mm]
Fehlt da nicht noch etwas?
> Eine weitere Frage bezieht sich auf obigen
> Satz:
> Ich halte die Formulierung für Fehlerhaft, wenn man
> Hatcher S.43 (PDF-Seite: 52)
> zugrundelegt. In dem
> Satz
> auf wikiversity ist [mm]g\in\pi_1(U_\alpha\cap U_\beta).[/mm] Damit
> kann [mm]i^{\alpha\beta}[/mm] keine Einbettung sein, die von
> [mm]U_\alpha\cap U_\beta[/mm] nach [mm]U_\alpha[/mm] abbildet! Weiterer
> Fehler: Es muss [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> nicht [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g^{-1})[/mm] heißen.
> Sind diese Fehlerbemerkungen korrekt?
Ja, es sollte [mm] $i^{\alpha\beta}\colon\pi_1(U_\alpha\cap U_\beta)\longrightarrow\pi_1(U_\alpha)$ [/mm] heißen. Dann macht [mm] $g\in\pi_1(U_\alpha\cap U_\beta)$ [/mm] auch Sinn. Außerdem ist das ein induzierter Gruppenhomomorphismus (so steht es auch im Hatcher), also ist [mm] $i^{\beta\alpha}(g)^{-1}$ [/mm] und$ [mm] i^{\beta\alpha}(g^{-1})$ [/mm] auch dasselbe.
> Ich freue mich auf eure Antworten
>
> MfG
> Ladon
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:18 Di 30.12.2014 | Autor: | Ladon |
> > Hallo,
> >
> > eine normale Untergruppe [mm]N\vartriangleleft G[/mm] heißt von
> > [mm]S\subseteq G[/mm] erzeugter Normalteiler gdw N der Schnitt
> aller
> > Normalteiler von G, die S enthalten, ist. Dies ist eine
> > recht analoge Definition zu der einer erzeugten
> > Untergruppe.
> > In der folgenden Formulierung des
> >
> Satzes (van Kampen)
> > wird von der normalen Untergruppe gesprochen, die durch
> > gewisse Elemente [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> > erzeugt wird (bitte Kontext im Link nachlesen).
> >
> > Kann ich hier den Darstellungssatz (s.u.) anwenden, wie er
> > bei einer von einer Menge [mm]X\subseteq G[/mm] erzeugten
> > Untergruppe [mm]U\le G[/mm] genutzt wird?
> > Darstellungssatz: Für alle [mm]\emptyset\neq X\subseteq G[/mm]
> mit
> > G Gruppe: [mm]:=\{x_1\cdots x_n|x_1,...,x_n\in X\cup X^{-1}, n\in\IN\}.[/mm]
>
> Fehlt da nicht noch etwas?
Inwiefern? Man könnte zum Darstellungssatz noch erwähnen:
Falls G abelsch, gilt für [mm] $a_1,...,a_n\in [/mm] G$: [mm] :=\{a_1^{\nu_1}\cdots a_n^{\nu_n}|\nu_1,..., \nu_n\in \IZ\}
[/mm]
Insb. für die von [mm] $a\in [/mm] G$ erzeugte zyklische Untergruppe: [mm] :=\{a^\nu|\nu\in\IZ\}
[/mm]
Oder meinst du den Hinweis, dass die normale Untergruppe von Elementen [mm] $i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}$, $g\in\pi_1(U_\alpha\cap U_\beta)$ [/mm] erzeugt ist?
>
> > Eine weitere Frage bezieht sich auf obigen
> >
> Satz:
> > Ich halte die Formulierung für Fehlerhaft, wenn man
> > Hatcher S.43 (PDF-Seite: 52)
> > zugrundelegt. In dem
> >
> Satz
> > auf wikiversity ist [mm]g\in\pi_1(U_\alpha\cap U_\beta).[/mm] Damit
> > kann [mm]i^{\alpha\beta}[/mm] keine Einbettung sein, die von
> > [mm]U_\alpha\cap U_\beta[/mm] nach [mm]U_\alpha[/mm] abbildet! Weiterer
> > Fehler: Es muss [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g)^{-1}[/mm]
> > nicht [mm]i^{\alpha\beta}(g)i^{\beta\alpha}(g^{-1})[/mm] heißen.
> > Sind diese Fehlerbemerkungen korrekt?
> Ja, es sollte [mm]i^{\alpha\beta}\colon\pi_1(U_\alpha\cap U_\beta)\longrightarrow\pi_1(U_\alpha)[/mm]
> heißen. Dann macht [mm]g\in\pi_1(U_\alpha\cap U_\beta)[/mm] auch
> Sinn. Außerdem ist das ein induzierter
> Gruppenhomomorphismus (so steht es auch im Hatcher), also
> ist [mm]i^{\beta\alpha}(g)^{-1}[/mm] und[mm] i^{\beta\alpha}(g^{-1})[/mm]
> auch dasselbe.
Stimmt. Es ist ja ein Gruppenhomomorphismus. Das habe ich nicht bedacht. Peinlich, peinlich....
Vielen Dank für deine Antwort!
LG
Ladon
|
|
|
|
|
Sry, ich habe irgendwo etwas falsch gelesen bei dem, was du Darstellungssatz nennst. Aber worum ging es dir jetzt im ersten Teil der Frage? Wolltest du wissen, ob es auch einen Darstellungssatz für erzeugte Normalteiler gibt?
Den gibt es: Der erzeugte Normalteiler einer Menge ist genau [mm] $\langle \bigcup_{g\in G} gAg^{-1}\rangle [/mm] $. Allerdings ist das nicht besonders hilfreich (genauso wie der Darstellungssatz für Untergruppen). Wenn man im konkreten Fall den erzeugten Normalteiler berechnen möchte, nimmt man sich einen Normalteiler, zeigt, dass $ X $ darin enthalten ist, und zeigt, dass es der kleinste solche ist. Im übrigen gibt es bei der Definition, sowohl für erzeugte Untergruppen, als auch für Normalteiler, keinen Grund die Nichtleerheit von X zu fordern, es ist sogar konzeptionell falsch.
Oder was genau war jetzt deine Frage zum erzeugten Normalteiler?
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:05 Di 30.12.2014 | Autor: | Ladon |
Thx
Damit ist alles geklärt!
LG
Ladon
|
|
|
|