euklidischer VR < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:44 Mi 11.07.2007 | Autor: | Zerwas |
Aufgabe | Sei [mm] V=\IR^4, W=<\pmat{1\\0\\1\\0},\pmat{-1\\2\\0\\0}> [/mm] und für [mm] x,y\in\IR^4 [/mm] <x,y>=x^TAy mit
[mm] A=\pmat{2&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1}
[/mm]
(a) Überlegen Sie ob V oder W mit der oben definierten Bilinearform < , > euklidische Räume sind.
(b) Geben Sie eine Orthonormalbasis von W bezüglich < , > an. |
(a) V und W sind trivialerweise VR. Jezt bleibt noch zu zeigen, dass < , > symmetrisch und positiv definit ist.
Symmetrie: lässt sich aus der symmetrie von A herleiten
positive Definitheit: für V sind nicht alle EW von A positiv und damit ist < , > über V kein Skalarprodut. Über W jedoch ist der Eintrag [mm] a_{44} [/mm] irrelevant, da man W auch als Teilraum von [mm] \IR^3 [/mm] auffassen könnte und damit die 4. Zeile und Spalte der Matrix wegfallen würden. [mm] \Rightarrow [/mm] < , > ist über W ein Salarprodukt und damit W bzgl. < , > ein euklidischer Raum.
(b) Orthogonalisieren:
[mm] u_1=\pmat{1\\0\\1\\0}
[/mm]
[mm] u_2=\pmat{-1\\2\\0\\0}-\bruch{<\pmat{-1\\2\\0\\0},\pmat{1\\0\\1\\0}>}{<\pmat{1\\0\\1\\0},\pmat{1\\0\\1\\0}>}*\pmat{1\\0\\1\\0}
[/mm]
[mm] <\pmat{-1\\2\\0\\0},\pmat{1\\0\\1\\0}>=\pmat{-1&2&0&0}*\pmat{2&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1}*\pmat{1\\0\\1\\0}=-2
[/mm]
[mm] <\pmat{1\\0\\1\\0},\pmat{1\\0\\1\\0}>=\pmat{1\\0\\1\\0}*\pmat{2&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1}*\pmat{1\\0\\1\\0}=3
[/mm]
[mm] \Rightarrow u_2=\pmat{-1\\2\\0\\0}+\bruch{2}{3}*\pmat{1\\0\\1\\0}=\pmat{-\bruch{1}{3}\\2\\\bruch{2}{3}\\0}
[/mm]
Orthogonalisieren:
[mm] =3 \Rightarrow ||u_1||=\Wurzel{3}
[/mm]
[mm] \Rightarrow e_1=\pmat{\bruch{1}{\wurzel{3}}\\0\\\bruch{1}{\wurzel{3}}\\0}
[/mm]
[mm] =\bruch{14}{3} \Rightarrow ||u_2||=\bruch{\wurzel{14}}{\wurzel{3}}
[/mm]
[mm] \Rightarrow e_2=\pmat{-\bruch{\wurzel{3}}{3*\wurzel{14}}\\\bruch{2*\wurzel{3}}{\wurzel{14}}\\\bruch{2*\wurzel{3}}{3*\wurzel{14}}\\0}
[/mm]
Stimmt das so?
Gruß Zerwas
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Fr 13.07.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|