www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysise^x Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - e^x Reihe
e^x Reihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e^x Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Di 24.01.2006
Autor: fiselius

Aufgabe
Man zeige mit Hilfe Riemannscher Summen und des Grenzwertes lim(x-->0)x/(e^(x)-1)=1, dass für alle a>0 gilt: Integral von 0 bis a über [mm] e^x [/mm] ist gleich [mm] e^a [/mm] - 1.

Hallo zusammen,

ich bin dabei o.g. Aufgabe zu lösen. Wenn ich die Obersumme S_(n) bilde, ergibt sich folgendes:

S = [mm] \bruch{a}{n} [/mm] ( [mm] e^{\bruch{a}{n}}+e^{\bruch{2a}{n}}+...+e^{\bruch{na}{n}}) [/mm]

Weiß nun jemand, wie ich diese Reihe zu einer Formel "ohne ..." zusammenfassen kann? Ich habe schon versucht mit dem natürlichen Logarithmus die Exponenten vom e zu trennen. Das geht aber natürlich nicht..;-/

Ich kann auch in Formelsammlungen keinen Eintrag finden, der mir die Lösung verrät.

Hoffentlich kann mir von euch jemand helfen. Ich bedanke mich jetzt schon.

Viele Grüße
Christian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
e^x Reihe: geometrische Reihe
Status: (Antwort) fertig Status 
Datum: 21:08 Di 24.01.2006
Autor: moudi


> Man zeige mit Hilfe Riemannscher Summen und des Grenzwertes
> lim(x-->0)x/(e^(x)-1)=1, dass für alle a>0 gilt: Integral
> von 0 bis a über [mm]e^x[/mm] ist gleich [mm]e^a[/mm] - 1.
>  Hallo zusammen,
>  
> ich bin dabei o.g. Aufgabe zu lösen. Wenn ich die Obersumme
> S_(n) bilde, ergibt sich folgendes:
>  
> S = [mm]\bruch{a}{n}[/mm] (
> [mm]e^{\bruch{a}{n}}+e^{\bruch{2a}{n}}+...+e^{\bruch{na}{n}})[/mm]

Hallo Christian

Das ist doch eine geometrische Reihe mit [mm] $q=e^{a/n}$, [/mm] denn [mm] $e^{2a/n}=(e^{a/n})^2$, [/mm] ... , [mm] $e^{na/n}=(e^{a/n})^n$ [/mm] (Potenzgesetz!)

mfG Moudi

>  
> Weiß nun jemand, wie ich diese Reihe zu einer Formel "ohne
> ..." zusammenfassen kann? Ich habe schon versucht mit dem
> natürlichen Logarithmus die Exponenten vom e zu trennen.
> Das geht aber natürlich nicht..;-/
>
> Ich kann auch in Formelsammlungen keinen Eintrag finden,
> der mir die Lösung verrät.
>  
> Hoffentlich kann mir von euch jemand helfen. Ich bedanke
> mich jetzt schon.
>  
> Viele Grüße
>  Christian
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]