www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenexistenz einer lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - existenz einer lösung
existenz einer lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

existenz einer lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 So 18.11.2007
Autor: balisto

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo!

ich soll aus der nagumo-bedingung die existenz einer lösung des anfangswertproblemes x'(t)=f(t,x(t)), x(0)=x0 beweisen (dabei ist f stetig).

meine idee ist jetzt folgende:

die nagumo-bedingung lautet ja:
|t| * |f(t,x) - f(t,y)| kleiner gleich |x-y|

da f stetig ist, müsste man doch nur noch zeigen, dass es auch beschränkt ist, denn dann könnte ich ja den existenzsatz von peano anwenden, oder?

aber wie kann ich zeigen, dass es beschränkt ist?

Danke schon mal!

        
Bezug
existenz einer lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:23 Mo 19.11.2007
Autor: MatthiasKr

Hi,
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> hallo!
>  
> ich soll aus der nagumo-bedingung die existenz einer lösung
> des anfangswertproblemes x'(t)=f(t,x(t)), x(0)=x0 beweisen
> (dabei ist f stetig).
>  
> meine idee ist jetzt folgende:
>  
> die nagumo-bedingung lautet ja:
>  |t| * |f(t,x) - f(t,y)| kleiner gleich |x-y|
>  
> da f stetig ist, müsste man doch nur noch zeigen, dass es
> auch beschränkt ist, denn dann könnte ich ja den
> existenzsatz von peano anwenden, oder?
>  
> aber wie kann ich zeigen, dass es beschränkt ist?

bist du sicher, dass du die aufgabe hier komplett angegeben hast? Weil: die existenz einer lokalen loesung kannst du schon aus der stetigkeit von $f$ folgern (peano). stetige funktionen sind ja beschraenkt auf kompakten mengen, wenn du also $f$ auf kompakten mengen betrachtest (was im satz von peano getan wird), so ist es automatisch beschraenkt.

bleibt die frage, was du mit der nagumo-bedingung anstellen sollst. Ist nicht auch nach eindeutigkeit gefragt? und muss f wirklich stetig sein?

gruss
matthias

Bezug
                
Bezug
existenz einer lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 19.11.2007
Autor: balisto

hallo,

wie ich die eindeutigkeit zeigen kann, ist mir klar.
bei der existenz hab ich einfach nicht drangedacht, dass stetige funktionen auf einem kompakten intervall ein maximum annehmen und damit beschränkt sind :P

danke! jetzt ist denk ich alles klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]