www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenexponentialfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - exponentialfunktion
exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 25.03.2014
Autor: highlandgold

hallo,

ich habe das beispiel:

f(x)= [mm] 3e^2^x. [/mm] Der Quotient f(x+1)/f(x), x beliebig hat eine besondere Eigenschaft . Welche? (man berechne den wert des quotienten und formuliere).

also ich setze mal die funktion in den quotienten ein:

[mm] 3e^2^x [/mm] + [mm] 1/3e^2^x [/mm] =0

weiters würde ich den natürlichen log. anwenden :

3ln(2x)+1/3ln(2x) =0

wäre dieser ansatz mal richtig bevor ich weitermache???

danke im voraus!

lg



        
Bezug
exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Di 25.03.2014
Autor: Fulla

Hallo highlandgold!

> hallo,

>

> ich habe das beispiel:

>

> f(x)= [mm]3e^2^x.[/mm] Der Quotient f(x+1)/f(x), x beliebig hat eine
> besondere Eigenschaft . Welche? (man berechne den wert des
> quotienten und formuliere).

Zunächst mal: dem Editor hier im Forum ist nicht klar, was du mit 3e^2^x meinst, darum wird es hier falsch angezeigt. Meinst du [mm]3e^{(2^x)}[/mm] oder [mm]3(e^2)^x[/mm]? Ohne das Setzen von Klammern ist [mm]3e^{2^x}=3e^{(2^x)}[/mm].

> also ich setze mal die funktion in den quotienten ein:

>

> [mm]3e^2^x[/mm] + [mm]1/3e^2^x[/mm] =0

Da fehlen wichtige Klammern!

> weiters würde ich den natürlichen log. anwenden :

>

> 3ln(2x)+1/3ln(2x) =0

>

> wäre dieser ansatz mal richtig bevor ich weitermache???

[notok]
1. Es muss heißen [mm]f(x+1)/f(x)=3e^{(2^{x+1})}/3e^{(2^x)}[/mm].
2. Woher kommt das =0?
3. Wenn du auf deine Gleichung den Logarithmus anwendest, ist die rechte Seite nicht definiert!


Den Log brauchst du hier nicht, sondern Potenzgesetze.
Beachte, dass [mm]3e^{(2^{x+1})}=3^{2\cdot (2^x)}[/mm]. Dann solltest du für $f(x+1)/f(x)$ wieder einen Ausdruck mit f(x) finden.


Lieben Gruß,
Fulla

Bezug
                
Bezug
exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Di 25.03.2014
Autor: highlandgold

hallo,

danke für die antwort!

ich versteh irgendwie nicht wie du von:
$ [mm] 3e^{(2^{x+1})} [/mm] auf     [mm] 3^{2\cdot (2^x)} [/mm] $ kommst???


lg

Bezug
                        
Bezug
exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Di 25.03.2014
Autor: Fulla

Nun, es gilt [mm]x^{a+b}=x^a\cdot x^b[/mm]. Angewandt auf diese Aufgabe ist [mm]2^{x+1}=2^x\cdot 2^1=2^x\cdot 2[/mm].

Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]