www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisextremaler schnittwinkel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - extremaler schnittwinkel
extremaler schnittwinkel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremaler schnittwinkel: abi-aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:03 Mi 02.02.2005
Autor: kiki19

abi-aufgabe!

Bräuchte einmal eure Hilfe bitte! Bei folgender Aufgabe..
Und zwar wüsste ich gerne wie man t ausrechnet! Vielen Dank im voraus!

y=f t (x)= 1/ (ln (tx)) t>0

Vom Punkt P 2 (0/2) aus werden 2 Tangenten an den Graph der Funktion f t gelegt.
Ermitteln Sie je eine Gleichung dieser Tangenten. (Hab ich)
Es existiert genau ein Wer t , für den der Schnittwinkel dieser Tangenren ertremal wird!
Ermitteln sie diesen Wert t!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
extremaler schnittwinkel: Lösungsideen?
Status: (Antwort) fertig Status 
Datum: 22:14 Mi 02.02.2005
Autor: informix

Hallo kiki,
[willkommenmr]
schön, dass du hierher gefunden hast.
Aber hast du auch schon unsere Forenregeln gelesen?

>
> Bräuchte einmal eure Hilfe bitte! Bei folgender Aufgabe..
>  Und zwar wüsste ich gerne wie man t ausrechnet! Vielen
> Dank im voraus!
>  
> y=f t (x)= 1/ (ln (tx)) t>0

Diese Formel kann man mit dem Formeleditor viel besser lesen.. ;-)
$y = [mm] f_t(x) [/mm] = [mm] \bruch{1}{\ln tx}$ [/mm]
Fahr mit der Maus drüber, dann siehst du, wie ich's geschrieben habe.

>  
> Vom Punkt P 2 (0/2) aus werden 2 Tangenten an den Graph der
> Funktion f t gelegt.
>  Ermitteln Sie je eine Gleichung dieser Tangenten. (Hab ich)

Es wäre schön, wenn du uns an deinen Ergebnissen teilhaben lassen würdest.
Dann könnten wir dir gezielt helfen.

>  Es existiert genau ein Wer t , für den der Schnittwinkel
> dieser Tangenren ertremal wird!
>  Ermitteln sie diesen Wert t!

ja und, was hast du dir schon überlegt?!


Bezug
                
Bezug
extremaler schnittwinkel: winkel
Status: (Frage) beantwortet Status 
Datum: 22:46 Mi 02.02.2005
Autor: kiki19

Also ich hab die beiden Tangenten aausgerechnet:
y1= -t/e * x +2
y2= -4t wurzel e *x  +2

nun kann ich die steigungen der beiden tangenten in die formel für den schnittwinkel einsetzen...
tan  [mm] \alpha [/mm] = m2 -m1 / 1+ m1m2

aber wie gehts nun weiter??

Bezug
                        
Bezug
extremaler schnittwinkel: Fast alles da! Weiterrechnen!
Status: (Antwort) fertig Status 
Datum: 23:11 Mi 02.02.2005
Autor: Loddar

Hallo kiki!

Du hast ja bereits fast alles da stehen:

[mm] $y_1(x) [/mm] \ =  \ [mm] -\bruch{t}{e}*x [/mm] + 2$ mit [mm] $m_1 [/mm] \ = \ [mm] -\bruch{t}{e}$ [/mm]

[mm] $y_2(x) [/mm] \ = \ -4t * [mm] \wurzel{e}*x+2$ [/mm] mit [mm] $m_2 [/mm] \ = \ -4t * [mm] \wurzel{e}$ [/mm]


Sowie: [mm] $tan(\alpha) [/mm] \ = \ f(t) \ = \ [mm] \bruch{m_2-m_1}{1+m_1*m_2}$ [/mm]


Wenn Du nun die Werte von [mm] $m_1$ [/mm] bzw. [mm] $m_2$ [/mm] einsetzt in die Funktionsvorschrift $f(t)$, hast Du eine Funktion, mit der Du eine Extremwertberechnung durchführen musst, also: $f'(t) = 0$ usw.
(DAS wird haarig ...)


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]