extrempunkt fk(x) < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
hallo ihr künstler,
hab hier eine aufgabe bekommen und muss von fk(x)=[mm] - \bruch{1}{12}*x^3+kx+9 [/mm] -->x,k= element von R
rechnerisch die funktion auf wendepunkte(was ich bereits mit Wp(0;k) gemacht habe) und extrempunkte untersuchen.
bei den extrempunkten bin ich soweit das ich den extremwert(x) der 1.ableitung in die ausgangsgleichung eingesetzt habe um den y-wert für den extrempunkt zu bekommen.
fk[mm] (\wurzel{4k})=- \bruch{1}{12}*(\wurzel{4k})^3+k*(\wurzel{4k})+9 [/mm]
nur hab ich gerade nen kleinen denkfehler und weiß im moment nicht weiter.
ich wäre für eine hilfestellung sehr dankbar!!
mfg,
Heinrich_XXIII
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:06 Mi 30.03.2005 | Autor: | Loddar |
Hallo Heinrich!
Hilft Dir dieser Tipp weiter?
[mm] $\left( \ \wurzel{a} \ \right)^3 [/mm] \ = \ a * [mm] \wurzel{a}$
[/mm]
Damit kannst Du dann für Deinen y-Wert [mm] $y_E$ [/mm] noch etwas zusammenfassen ...
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:10 Mi 30.03.2005 | Autor: | Loddar |
... kannst Du hier auch noch partielles Wurzelziehen anwenden:
[mm] $\wurzel{4*k} [/mm] \ = \ [mm] \wurzel{4} [/mm] * [mm] \wurzel{k} [/mm] \ = \ 2 * [mm] \wurzel{k}$
[/mm]
Gruß
Loddar
|
|
|
|
|
hallo loddar,
danke für deine schnelle antwort...
ich habe für [mm] -\bruch{1}{12}*(\wurzel4k)^3[/mm]
vereinfacht [mm] -\bruch{1}{3}*k^\bruch{3}{2}[/mm] herausbekommen.
bei dem rest bin ich mir noch nicht sicher, habe aber [mm] 2k*\wurzel{k} [/mm] + 9 als zwischenergebnis der rundung im 2. teil(nach dem +).
sag mir bitte ob es dem richtigen ergebnis entgegen kommt oder nicht.
vielen dank jetzt schon einmal
mfg, heinrichXXIII
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:13 Mi 30.03.2005 | Autor: | Disap |
> hallo loddar,
> danke für deine schnelle antwort...
> ich habe für [mm]-\bruch{1}{12}*(\wurzel4k)^3[/mm]
> vereinfacht [mm]-\bruch{1}{3}*k^\bruch{3}{2}[/mm] herausbekommen.
Ich nehme an, du meinst hier [mm] -\bruch{2}{3}*k^\bruch{3}{2}, [/mm]
denn [mm] \wurzel{4^3} [/mm] = 8 * (- [mm] \bruch{1}{12} [/mm] ) = - [mm] \bruch{2}{3}
[/mm]
Das [mm] \pm [/mm] (Plus Minus) aus dem Wurzelziehen habe ich mal weggelassen
Als Ergänzung möchte ich noch sagen, ich weiß gar nicht wirklich, was du gemacht hast. Ist das hier die Lösung für den Y-Wert des Extremas? Für den Fall, dass es so sein soll, sieht mir das so aus, als hättest du etwas vergessen...
f(x) = - [mm] \bruch{1}{12}\cdot{}x^3+kx+9
[/mm]
[mm] f(2\wurzel{k})=- \bruch{1}{12}\cdot{}(2\wurzel{k})^3+k(2\wurzel{k})+9
[/mm]
[mm] f(-2\wurzel{k})=- \bruch{1}{12}\cdot{}(-2\wurzel{k})^3+k(-2\wurzel{k})+9
[/mm]
Achso (3. Edit), dann möchte ich dich noch einmal drauf hinweisen, dass [mm] \wurzel{4} [/mm] nicht nur 2 ist, sondern [mm] \pm [/mm] 2. Wird oftmals vergessen.
Grüße Disap
|
|
|
|
|
hallo disap,
du willst mir also sagen dass das k in der wurzel keine rolle bei der ermittlung des koeffizienten spielt?
da ist ja noch ein k in [mm] \wurzel{4^3} [/mm], oder ?
der ermittelte wert [mm] -\bruch{2}{3}[/mm] ist, da hast du recht noch nicht alles.aber wie ist das bei dem 2. teil der funktion(siehe 1.frage)
wie gehe ich da weiter vor um auf einen y-wert für meinen extrempunkt zu bekommen?
danke für die zeit
HeinrichXXIII
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:55 Mi 30.03.2005 | Autor: | Disap |
> hallo disap,
>
Hi HeinrichXXIII
> du willst mir also sagen dass das k in der wurzel keine
> rolle bei der ermittlung des koeffizienten spielt?
Nein, das wollte ich so nicht sagen.
> da ist ja noch ein k in [mm]\wurzel{4^3} [/mm], oder ?
Stimmt. Aber wie Loddar schon sagte:
[mm] \wurzel{4\cdot{}k} [/mm] = [mm] \wurzel{4} \cdot{} \wurzel{k} [/mm] = 2 [mm] \cdot{} \wurzel{k}
[/mm]
Wenn man in dem Fall jetzt [mm] \wurzel{(4k)^3} [/mm] hat
dann ist das das selbe wie
[mm] \wurzel{(4^3*k^3)} [/mm] = [mm] \wurzel{(4*4*4*k^3)} [/mm] ) [mm] \wurzel{(64*k^3)} [/mm] = [mm] \wurzel{64}*\wurzel{k^3} [/mm] = 8* [mm] \wurzel{k^3}
[/mm]
> der ermittelte wert [mm]-\bruch{2}{3}[/mm] ist, da hast du recht
> noch nicht alles.aber wie ist das bei dem 2. teil der
> funktion(siehe 1.frage)
Ich habe gerade keine Ahnung, was du mit 2. Teil der Funktion meinst, evtl. die nächste Frage:
> wie gehe ich da weiter vor um auf einen y-wert für meinen
> extrempunkt zu bekommen?
Den ermittelten X-Wert in die Ausgangsfunktion f(x) einsetzen
[mm] f(2\wurzel{k})=- \bruch{1}{12}\cdot{}\wurzel{k})^3+k(2\wurzel{k})+9
[/mm]
Und nun nach dem Potenzgesetz weiter vereinfachen.
= [mm] -\bruch{2}{3}\cdot{}\wurzel{k^3}+k(2\wurzel{k})+9
[/mm]
[mm] =-\bruch{2}{3}\cdot{}k^{\bruch{3}{2}}+k(2\wurzel{k})+9
[/mm]
[mm] =-\bruch{2}{3}\cdot{}k^{\bruch{3}{2}}+k(2k^{\bruch{1}{2}})+9
[/mm]
Und so weiter...
Der Hauptgag bei diesem Rechenspiel liegt wohl bei solchen Spielchen bei den Potenzgesetzen.
"Potenzen mit gleichen Basen werden multipliziert,..." Diese Gesetze solltest du auf jedenfall können.
Das Kontrollergebnis ist hierbei Extrema [mm] (2\wurzel{k}|| \bruch{4k^{\bruch{3}{2}}}{3}+9
[/mm]
> danke für die zeit
>
> HeinrichXXIII
Oah, ich hoffe, ich habe mich da gerade nicht vertan. Beim Schreiben mit diesem Formeleditor wirds nämlich manchmal ziemlich unübersichtlich.
Einfach mal selbst nachrechnen und laut Schreien, wenn etwas nicht stimmt.
Liebe Grüße Disap
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:13 Mi 30.03.2005 | Autor: | Disap |
Aber war da nicht noch etwas? In einer Kurvendiskussion ist es wichtig, dass das Extrema ebenfalls die hinreichende Bedingung erfüllt. Die notwendige hast du ja schon gemacht.
Hinreichende Bedingung erfüllt sich entweder durch den Vorzeichenwechsel (der dem GK wohl eher selten gezeigt wird, und auch nicht unbedingt wichtig ist für den GK), oder durch Einsetzen des X-Werts des "Extremas" in die zweite Ableitung (sagt dir ja sicherlich etwas, sonst würde ich etwas förmlicher werden).
Hierbei kannst du dann auch gleich feststellen, ob es sich um ein Minima bzw. Maxima handelt. Einfach nur zu sagen, es wäre ein Extrempunkt reicht bei einer Kurvendiskussion nicht.
mfG Disap
|
|
|
|
|
hallo noch einmal...
hab den ermittelten wert in die 2.ableitung([mm] -\bruch{1}{2} x [/mm]) eingesetzt und bin auf einen wert <0 gekommen,--> demzufolge lokales maximum bekommen.
jetzt hab ich aber 2 extremas je maxi und minimum(lokal)
ich merk schon ich steh heut völlig auf dem schlauch.
was ist mit dem minimum?
danke euch
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:04 Do 31.03.2005 | Autor: | Disap |
> hallo noch einmal...
Hallo.
> hab den ermittelten wert in die 2.ableitung([mm] -\bruch{1}{2} x [/mm])
> eingesetzt und bin auf einen wert <0 gekommen,-->
> demzufolge lokales maximum bekommen.
> jetzt hab ich aber 2 extremas je maxi und minimum(lokal)
Bei Aufgaben mit Scharparametern ist es immer ganz wichtig, Fallunterscheidungen für bestimmte K zu treffen. Wir haben ja als ergebnis Forfaktor* [mm] \wurzel{k}. [/mm] Wäre k<0 dann hätte es keine reele Lösung, weil aus negativen Zahlen kann man schlecht die zweite Wurzel ziehen. Welche Zahl mit sich selbst malgenommen ergibt z.B. -1? Ist also hakelig.
Angenommen k wäre gleich Null, dann hätten wir jedoch eine einzige Lösung. 2 * [mm] \wurzel{0} [/mm] und -2 * [mm] \wurzel{0} [/mm] ergibt wohl beides Null.
In deinen Rechnung bisher beziehst du dich nur auf k>0
Für k>0 gibts Hochpunkt und Tiefpunkt, richtig.
> ich merk schon ich steh heut völlig auf dem schlauch.
> was ist mit dem minimum?
Was ist dir da unklar? Du hast ja schon bestimmt, dass es einen (Minimum, auch bekannt als) Tiefpunkt und (Maximum) Hochpunkt für k>0.
(Ohne hier etwas großartig darzustellen). Die Funktion f(x) = [mm] x^2 [/mm] hätte einen Tiefpunkt, evtl. reicht dir das ja.
Also mir ist gerade ein bisschen unklar, was genau du jetzt "hören" wolltest.
> danke euch
Grüße Disap
|
|
|
|
|
hallo disap...
ich bin nun auf den trichter gekommen...bin am mittag etwas besser im denken
ich hatte ja bei der 1.ableitung für meinen x-wert [mm] \pm2*\wurzel{k}[/mm] und so setzte ich einfach den ermittelten wert mit umgekehrten vorzeichen in die ausgangsgleichung um meinen y-wert für den tiefpunkt(minimum) zu bekommen.
[mm]x^3 [/mm]für[mm]x^{n-1} \hat= 2 extrempunkte [/mm]
vielen danke
mfg heinrichXXIII
|
|
|
|
|
hey disap...
danke für deine schnelle, recht logische antwort.
ich hätte das so glaube ich nicht gleich hinbekommen und möchte euch allen danken.
also...habt dank
bis demnächst
heinrichXXIII
|
|
|
|