www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationf³ Regelfunktion, dann auch f?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - f³ Regelfunktion, dann auch f?
f³ Regelfunktion, dann auch f? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f³ Regelfunktion, dann auch f?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Mo 08.02.2010
Autor: Doemmi

Aufgabe
Über die beschränkte Funktion f:[a,b] [mm] \to \IR [/mm]  sei bekannt, dass [mm] f^{3} [/mm] eine Regelfunktion ist. Folgt daraus, dass f eine Regelfunktion ist?

Die gleiche Aufgabe sollte ich auch für [mm] f^{2} [/mm] lösen. Da habe ich mir f definiert als f(x) = 1 für x irrational und f(x) = -1 für x rational.
Dann war [mm] f^{2}=1 [/mm]
Also [mm] f^{2} [/mm] eine Regelfunktion, aber f nicht.

Im Fall [mm] f^{3} [/mm] bin ich mir nicht mal sicher, was richtig ist. Ich würde vermuten, dass es nicht stimmt, dass f auch eine Regelfunktion ist, wenn  [mm] f^{3} [/mm] eine ist.
Mir fällt aber kein Gegenbeispiel ein.


        
Bezug
f³ Regelfunktion, dann auch f?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mo 08.02.2010
Autor: fred97


> Über die beschränkte Funktion f:[a,b] [mm]\to \IR[/mm]  sei
> bekannt, dass [mm]f^{3}[/mm] eine Regelfunktion ist. Folgt daraus,
> dass f eine Regelfunktion ist?
>  Die gleiche Aufgabe sollte ich auch für [mm]f^{2}[/mm] lösen. Da
> habe ich mir f definiert als f(x) = 1 für x irrational und
> f(x) = -1 für x rational.
>  Dann war [mm]f^{2}=1[/mm]
>  Also [mm]f^{2}[/mm] eine Regelfunktion, aber f nicht.
>  
> Im Fall [mm]f^{3}[/mm] bin ich mir nicht mal sicher, was richtig
> ist. Ich würde vermuten, dass es nicht stimmt, dass f auch
> eine Regelfunktion ist, wenn  [mm]f^{3}[/mm] eine ist.
>  Mir fällt aber kein Gegenbeispiel ein.

Das kann Dir auch nicht einfallen !!

Es gilt folgendes (vielleicht hattet Ihr das):

Ist [mm] $g:\IR \to \IR$ [/mm] stetig und injektiv, so gilt:

          f ist eine Regelfunktion [mm] \gdw [/mm] $g [mm] \circ [/mm] f$ ist eine Regelfunktion.

Wie mußt Du g wählen, damit $g [mm] \circ [/mm] f= [mm] f^3$ [/mm] ist ?

FRED


>  


Bezug
                
Bezug
f³ Regelfunktion, dann auch f?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Mo 08.02.2010
Autor: Doemmi

Oh ja, da hatte ich in der Tat... Das war sogar der erste Teil dieser Aufgabe.
Dann müsste ich g = [mm] f^{2} [/mm] wählen und außerdem müsste [mm] f^{2} [/mm] injektiv und stetig sein?

Bezug
                        
Bezug
f³ Regelfunktion, dann auch f?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mo 08.02.2010
Autor: fred97


> Oh ja, da hatte ich in der Tat... Das war sogar der erste
> Teil dieser Aufgabe.
>  Dann müsste ich g = [mm]f^{2}[/mm] wählen

Nein. Wie wärs mit $g(x) = [mm] x^3$ [/mm]   ???


FRED


> und außerdem müsste
> [mm]f^{2}[/mm] injektiv und stetig sein?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]