www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisf diffbar,dann ex.Konst.ü.Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - f diffbar,dann ex.Konst.ü.Norm
f diffbar,dann ex.Konst.ü.Norm < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f diffbar,dann ex.Konst.ü.Norm: Frage
Status: (Frage) beantwortet Status 
Datum: 13:51 Mi 20.07.2005
Autor: Brinchen

Hallihallo!

Zerbreche mir über folgende Aufgabe den Kopf:

Sei f:  [mm] \IR^{m} \to \IR^{n} [/mm] eine stetig diffbare Abbildung und sei
{x  [mm] \in \IR^{m} [/mm] | f(x)  [mm] \not= [/mm] 0} in einer kompakten Teilmege erhalten. zu zeigen: Es existiert eine Konstante K, so dass  
[mm] \parallel [/mm] f(p)-f(q) [mm] \parallel \le [/mm] K* [mm] \parallel [/mm] p-q [mm] \parallel [/mm] gilt für alle p und q aus [mm] \IR^{m}. [/mm]

Kann man das genauso machen wie beim Beweis, dass es eine solche Konstante gibt, wenn eine lineare Abbildung stetig ist?
Die sieht mir nämlich so verdammt ähnlich aus, dass ich da gar keinen Unterschied sehen kann und daher auch auf keine Lösung komme.

Könnte einer von euch (gerne auch mehrere :-) ) mir wohl dabei helfen?

Dankedankedanke! Ihr seid supisupisupi :-)

Das Brinchen

        
Bezug
f diffbar,dann ex.Konst.ü.Norm: Kommentar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Mi 20.07.2005
Autor: statler

Hallo,
die Frage gehört trotz der topologischen Fachausdrücke mehr zu Analysis (Funktionen mehrerer reeller Veränderlicher). Das müßte funktionieren wie bei einer entsprechenden Fkt. von R nach R, nur jetzt mit Norm statt Betrag.
Ich hoffe, irgendeiner nimmt sich der Sache an.
Gruß

Bezug
        
Bezug
f diffbar,dann ex.Konst.ü.Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Mi 20.07.2005
Autor: Gnometech

Hallo!

Naja, der grosse Unterschied zu linearen Abbildungen ist, dass die Abbildung im Allgemeinen nicht linear ist... ;-)

Aber die Lösung ist nicht schwer. Die Funktion hat kompakten Träger (das bedeutet, dass sie außerhalb einer kompakten Menge konstant o ist) und damit gilt selbiges auch für die Ableitung. Diese ist aber stetig und nimmt daher das Maximum in der Norm an (Matrixnorm in diesem Fall, die Ableitung ist ja an jedem Punkt eine Matrix!). Die Ungleichung folgt dann aus der mehrdimensionalen Variante des Mittelwertsatzes.

Alles klar? Achja, ich verschiebe das mal in die Analysis...

Gruß,

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]