www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisf harmonisch machen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - f harmonisch machen
f harmonisch machen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f harmonisch machen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:49 So 02.10.2011
Autor: kushkush

Aufgabe
Sei $u(x+iy) = cos(x)cosh(y)$ mit $x+iy [mm] \in \IC$. [/mm] Man verifiziere, dass u harmonisch in [mm] $\IC$ [/mm] ist und finde eine Funktion [mm] $v:\IC \rightarrow \IR$ [/mm] so dass $f=u+iv [mm] \in \mathcal{O}(G)$ [/mm] und $f(0)=1$ sind.

Hallo!



1 ) Es ist :

         [mm] $u_{xx} [/mm] = -cos(x)cosh(y) , [mm] u_{yy}= [/mm] cos(x)sinh(y)  [mm] \Rightarrow u_{xx}+u_{yy} [/mm] = 0$  und damit $u$ harmonisch.



2)  $f=cos(x)cosh(y)+iv(x,y)$ mit der Bedingung $f [mm] \in \mathcal{O}(G)$ [/mm] und $f(0)=1$.  CauRieDGL Bedingung:
       [mm] $u_{x}= [/mm] -sin(x)cosh(y) = [mm] v_{y} [/mm] $
       [mm] $u_{y}= [/mm] cos(x)sinh(y) = [mm] -v_{x} [/mm] $

dann ist also: $v(x,y) = -sin(x)sinh(y)$


also : $f= cos(x)cosh(y)-isin(x)sinh(y)$ , die Bedingung $f(0)=1$ ist erfüllt.


Ist das so OK?


Vielen Dank für jegliche Hilfestellung!


Gruss
kushkush

        
Bezug
f harmonisch machen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 So 02.10.2011
Autor: MathePower

Hallo kushkush,

> Sei [mm]u(x+iy) = cos(x)cosh(y)[/mm] mit [mm]x+iy \in \IC[/mm]. Man
> verifiziere, dass u harmonisch in [mm]\IC[/mm] ist und finde eine
> Funktion [mm]v:\IC \rightarrow \IR[/mm] so dass [mm]f=u+iv \in \mathcal{O}(G)[/mm]
> und [mm]f(0)=1[/mm] sind.


Hier ist wohl f(0,0)=1 gemeint.


>  Hallo!
>  
>
>
> 1 ) Es ist :
>
> [mm]u_{xx} = -cos(x)cosh(y) , u_{yy}= cos(x)sinh(y) \Rightarrow u_{xx}+u_{yy} = 0[/mm]
>  und damit [mm]u[/mm] harmonisch.
>
>
>
> 2)  [mm]f=cos(x)cosh(y)+iv(x,y)[/mm] mit der Bedingung [mm]f \in \mathcal{O}(G)[/mm]
> und [mm]f(0)=1[/mm].  CauRieDGL Bedingung:
> [mm]u_{x}= -sin(x)cosh(y) = v_{y}[/mm]
>         [mm]u_{y}= cos(x)sinh(y) = -v_{x}[/mm]
>  
> dann ist also: [mm]v(x,y) = -sin(x)sinh(y)[/mm]
>  
>
> also : [mm]f= cos(x)cosh(y)-isin(x)sinh(y)[/mm] , die Bedingung
> [mm]f(0)=1[/mm] ist erfüllt.
>  
>
> Ist das so OK?
>


Ja. [ok]


>
> Vielen Dank für jegliche Hilfestellung!
>  
>
> Gruss
>  kushkush  


Gruss
MathePower

Bezug
                
Bezug
f harmonisch machen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 So 02.10.2011
Autor: kushkush

Hallo Mathepower,


>

>


> daumenhoch

Vielen Dank fürs Drüberschauen!


Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]