f(v)=0 und f(u)=u < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | a) Angenommen, f: V [mm] \to [/mm] W ist eine lineare Abbildung, U [mm] \subset [/mm] V ist ein echter Unterraum,und f(v) = 0 für alle v [mm] \in V\U. [/mm] Zeigen Sie, dass f(v) = 0 für alle v [mm] \in [/mm] V .
b)Sei V ein endlich dimensionaler k-Vektorraum und U [mm] \subseteq [/mm] V ein Unterraum. Zeigen Sie, dass es eine lineare Abbildung f: V [mm] \to [/mm] U gibt derart, dass f(u) = u
gilt für jedes u [mm] \in [/mm] U. |
tut mir leid aber ich habe noch 2 aufgaben.
ich kann auch nicht viel posten weil ich nie weiß wie ich das zeigen soll. ich würde es aber gerne noch mal sehen um bei der klausur wenigstens ne idee oder nen ansatz zu haben.
|
|
|
|
> a) Angenommen, f: V [mm]\to[/mm] W ist eine lineare Abbildung, U
> [mm]\subset[/mm] V ist ein echter Unterraum,und f(v) = 0 für alle v
> [mm]\in V\U.[/mm] Zeigen Sie, dass f(v) = 0 für alle v [mm]\in[/mm] V .
Hallo,
so, wie Du es aufgeschrieben hast, gibt's bei a) absolut nix zu zeigen.
>
> b)Sei V ein endlich dimensionaler k-Vektorraum und U
> [mm]\subseteq[/mm] V ein Unterraum. Zeigen Sie, dass es eine lineare
> Abbildung f: V [mm]\to[/mm] U gibt derart, dass f(u) = u
> gilt für jedes u [mm]\in[/mm] U.
Zu b)
Eine Basis B von U kannst Du in V erweitern zu einer Basis von V.
Bilde die Basiselemente von B durch f auf sich selber ab und zeige, indem Du die Linearität ausnutzt, daß so jedes Element von U auf sich selber abgebildet wird.
Gruß v. Angela
|
|
|
|