www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorief(x,y)=1/x+y integrierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - f(x,y)=1/x+y integrierbar
f(x,y)=1/x+y integrierbar < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Fr 10.10.2008
Autor: kiri111

Aufgabe
Man zeige, dass die Funktion f: [mm] (0,1)^2 \subset \IR^{2} \to \IR, f(x,y):=\bruch{1}{x+y} [/mm] integrierbar ist, und berechne das Integral.

Hallo,
blöde Frage: Aber wie zeige ich die Integrierbarkeit???

Kann jemand mal überprüfen, ob das Integral Null ist?

Viele liebe Grüße kiri

        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Fr 10.10.2008
Autor: Al-Chwarizmi


> Man zeige, dass die Funktion f: [mm](0,1)^2 \subset \IR^{2} \to \IR, f(x,y):=\bruch{1}{x+y}[/mm]
> integrierbar ist, und berechne das Integral.
>  Hallo,
>  blöde Frage: Aber wie zeige ich die Integrierbarkeit???
>  
> Kann jemand mal überprüfen, ob das Integral Null ist?
>  
> Viele liebe Grüße kiri


hallo kiri,

1.) Das einzige Problem könnte im Bereich sehr kleiner x und y
    liegen.

2.) Das Integral ist bestimmt nicht Null, da der Integrand für
    alle erlaubten (x,y)  positiv ist

3.) Um die Integrierbarkeit nachzuweisen, gilt es, die Integration
    wirklich durchzuführen:

          [mm] \integral_{0}^{1}\left(\integral_{0}^{1}\bruch{1}{x+y}\ dx\right)dy\ [/mm] = .......


LG     Al-Chw.

Bezug
                
Bezug
f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Fr 10.10.2008
Autor: kiri111

Hallo,
reicht es denn für die Begrüdung zur Integrierbarkeit deine Argumenation unter 2.)?

Wenn ich das Integral berechne (nach Fubini), muss ich aber immer ln0 ausrechnen!?

Liebe Grüße
kiri

Bezug
                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Fr 10.10.2008
Autor: steppenhahn

Hallo!

Du musst nicht [mm] \ln(0) [/mm] ausrechnen, sondern den Grenzwert, den dein Term für [mm] y\to [/mm] 0 annimmt! Und nur wenn dieser GW existiert (und du ihn berechnen kannst), ist die Funktion "integrierbar".

[mm] \integral_{0}^{1}{\integral_{0}^{1}{\bruch{1}{x+y} dx} dy} [/mm]

= [mm] \integral_{0}^{1}{\left[\ln(x+y)\right]_{x = 0}^{x = 1} dy} [/mm]

= [mm] \integral_{0}^{1}{\ln(1+y) - \ln(y) dy} [/mm]

= [mm] \left[(1+y)*\ln(1+y) - (1+y) - (y*\ln(y) - y)\right]_{y=0}^{y=1} [/mm]

= [mm] \left[(1+y)*\ln(1+y) - 1- y - y*\ln(y) + y\right]_{y=0}^{y=1} [/mm]

= [mm] \left[(1+y)*\ln(1+y) - y*\ln(y) - 1\right]_{y=0}^{y=1} [/mm]

(Die -1 am Ende könnte man auch weglassen)

Und nun siehst du ja, dass du 0 nicht ohne weiteres einsetzen kannst, weil dann dein [mm] y*\ln(y) [/mm] nicht mehr mitspielt. Dann musst du immer auf den Grenzwert ausweichen!
Berechne also

[mm] \underbrace{2*\ln(2) - 1}_{ObereGrenzeEingesetzt} [/mm] -  [mm] \limes_{y\rightarrow 0}\left((1+y)*\ln(1+y) - y*\ln(y) - 1\right) [/mm]

Viel Spaß :-)

Stefan.

Bezug
                                
Bezug
f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Fr 10.10.2008
Autor: kiri111

Ist der besagte Grenzwert -1??

Liebe Grüße
kiri

Bezug
                                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Fr 10.10.2008
Autor: Merle23

Du integrierst doch auf dem Intervall [mm] (0,1)^2, [/mm] wie kann denn da dein Integral jemals negativ werden?
Vielleicht hat sich auch steppenhahn bei seinen Umformungen verrechnet, ich hab es nicht nachgeprüft.

Bezug
                                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Fr 10.10.2008
Autor: Al-Chwarizmi


> Ist der besagte Grenzwert -1??


Mein Ergebnis für das Integral ist  [mm] 2*ln(2)\approx [/mm] 1.3863      

Bezug
                                                
Bezug
f(x,y)=1/x+y integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Sa 11.10.2008
Autor: kiri111

Aber wie weise ich nach, dass der Grenzwert 1 ist?

Viele liebe grüße kiri

Bezug
                                                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 11.10.2008
Autor: Blech

[mm] $\lim_{y\to 0} y\ln(y)=\lim_{y\to 0} \frac{\ln y}{\frac{1}{y}}$ [/mm]

Jetzt l'Hospital.

ciao
Stefan

Bezug
                                                                
Bezug
f(x,y)=1/x+y integrierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Sa 11.10.2008
Autor: kiri111

Ach, wundbar. Vielen Dank!!

kiri

Bezug
                        
Bezug
f(x,y)=1/x+y integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Fr 10.10.2008
Autor: Al-Chwarizmi


> Hallo,
>  reicht es denn für die Begrüdung zur Integrierbarkeit
> deine Argumenation unter 2.)?
>  
> Wenn ich das Integral berechne (nach Fubini), muss ich aber
> immer ln0 ausrechnen!?
>  
> Liebe Grüße
>  kiri


In meinem Punkt 2.) ging es gar nicht um die Integrierbarkeit
an sich, sondern nur darum, dass der Wert des Integrals (falls
er denn überhaupt existieren sollte) sicher nicht Null sein kann.

Die Integrierbarkeit habe ich unter Punkt 3.) angesprochen, und
da geht es, wie steppenhahn schon erläutert hat, natürlich um
"uneigentliche" Integrale und damit um Grenzwerte.

LG    Al


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]