fehlerhafte Addition < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] e_n:=(1+1/n)^n=e+O(n^{-1})
[/mm]
Zeigen Sie, dass unter der fehlerbehafteten Addition [mm] 1\oplus1/n [/mm] = [mm] 1+1/n+O(\varepsilon) [/mm] gilt:
[mm] e_{n}' [/mm] = e + [mm] O(n^{-1})+O(n\varepsilon) [/mm] |
Also ich habe es mit der binomischen Formel probiert.
[mm] \summe_{k=0}^{n}\vektor{n \\ k}(1+1/n)^{n}O(\varepsilon)^{k} [/mm] = [mm] (1+1/n)^{n}+n(1+1/n)^{n-1}O(\varepsilon)+...
[/mm]
Also die restlichen Summanden müsten wegfallen, weil ja [mm] O(\varepsilon)^{2} [/mm] schon sehr klein ist, und weggelassen werden kann.
Aber wie man die ersten beiden Summanden auf die gewünschte Form kriegt, sehe ich leider nicht.
|
|
|
|
Hallo Heureka89,
ich nehme an, dass [mm] $e_n' [/mm] := [mm] (1\oplus \frac{1}{n})^n$.
[/mm]
Aus Deiner Formel
[mm] $e_n' [/mm] = [mm] (1+\frac{1}{n}+\mathcal{O}(\varepsilon))^n= \sum_{k=0}^{n} [/mm] {n [mm] \choose k}(1+\frac{1}{n})^{n-k}\mathcal{O}(\varepsilon)^{k} [/mm] = [mm] (1+\frac{1}{n})^{n}+n(1+\frac{1}{n})^{n-1}\mathcal{O}(\varepsilon)+... [/mm] $
(den Schreibfehler $n$ habe ich mit $n-k$ korrigiert)
folgt [mm] $|e_n' [/mm] - e| = [mm] |e_n' [/mm] - [mm] e_n [/mm] + [mm] e_n [/mm] - e| [mm] \leq |e_n' [/mm] - [mm] e_n| [/mm] + [mm] |e_n [/mm] - e| [mm] \leq n(1+\frac{1}{n})^{n-1}\mathcal{O}(\varepsilon) [/mm] + [mm] \mathcal{O}(n^{-1})$. [/mm] Der Rest ist klar, oder?
Gruß
mathfunnel
|
|
|
|
|
Hi,
danke schonmal für die Antwort.
Leider sehe ich noch nicht, wie es weitergehen soll.
Könnte man nun [mm] |e_{n}'+e| [/mm] abschätzen, und dann die beiden Ausdrücke vergleichen?
|
|
|
|
|
Hallo Heureka89,
wir reden doch von [mm] $|e_n' [/mm] - e|$ und nicht von [mm] $|e_n' [/mm] + e|$.
Das Ergebnis steht doch schon (fast) da:
[mm] $|e_n' [/mm] - e| [mm] \leq n(1+\frac{1}{n})^{n-1}\mathcal{O}(\varepsilon) [/mm] + [mm] \mathcal{O}(n^{-1})$ [/mm]
Diese Ungleichung bedeutet, dass [mm] $e_n' [/mm] = e + [mm] \mathcal{O}(n^{-1})+\mathcal{O}(n\varepsilon) [/mm] $.
Denn es gilt, dass [mm] $(1+\frac{1}{n})^{n-1}$ [/mm] gegen $e$ geht, und [mm] $n\mathcal{O}(\varepsilon) [/mm] = [mm] \mathcal{O}(n\varepsilon) [/mm] $.
Gruß
mathfunnel
|
|
|
|