www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisfkt:A=... nicht Unendlich,Aufg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - fkt:A=... nicht Unendlich,Aufg
fkt:A=... nicht Unendlich,Aufg < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

fkt:A=... nicht Unendlich,Aufg: Frage
Status: (Frage) beantwortet Status 
Datum: 14:23 Do 15.09.2005
Autor: Phoney

Hallo!
Ich denke die Aufgabe beschreibt am genausten mein Problem:

Der Graph [mm] G_{k} [/mm] und die x-Achse schließen ein Flächenstück ein, das sich im 1. Quadranten ins Unendliche erstreckt. Zeigen Sie, dass diesem Flächenstück für alle k ein endlicher Flächeninhalt [mm] I_{k} [/mm] zugeordnet werden kann.
Geben Sie den Wert von [mm] I_{k} [/mm] an.

Zunächst einmal muss ich leider sagen, dass ich noch nie verstanden habe, warum der Flächeninhalt eines Graphen wie z.B. der E-Funktion begrenzt ist. Daher ist die Aufgabe noch schwieriger

Die Funktionsgleichung lautet übrigens:
f(x) = (2x+k) * [mm] e^{\bruch{-1}{k}*x} [/mm] mit k>0

Mein Ansatz - Integral bilden mit den Integralsgrenzen Unendlich und Null, weil erster Quadrant

(Ich habe übrigens nach der Produktregel integriert. Integral ist völlig richtig) - Keine Ahnung, wie man obere und untere Integralsgrenzen darstellt.

[mm] \integral_{0}^{\infty} [/mm] {f(x) dx} = [mm] [-k(2x+3k)*e^{\bruch{-1}{k}*x}] [/mm]

Alles einsetzt komme ich auf:

[mm] =-k(2*\infty+3k)*e^{\bruch{-1}{k}}* \infty- (-k(2*0+3k)*e^{\bruch{-1}{k}*0}) [/mm]

Und wie mache ich nun weiter? Ich habe schon alles ausmultipliziert und den ln am Ende genommen, hilft mir aber nicht, weil da noch das Unendlich im Exponent und [mm] *2*\infty [/mm] steht.

Ist der Ansatz sogar schon falsch?????
Ist der Ansatz ok und ich löse dannach noch weiter falsch auf?

mfG Phoney

        
Bezug
fkt:A=... nicht Unendlich,Aufg: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Do 15.09.2005
Autor: danielinteractive

Hallo Johann,

jepp, die Stammfunktion (nennen wir sie [mm]F[/mm]) ist perfekt.

Jetzt zum uneigentlichen Integral. Dazu müssen wir zeigen, dass [mm] \limes_{x\rightarrow\infty} (-k*e^{-x/k}*(2x+3k)) [/mm] existiert. Das ist das gleiche wie [mm]-k*\limes_{x\rightarrow\infty} \bruch{2x+3k}{e^{x/k}} [/mm] Und es ist sowohl [mm] 2x+3k \to \infty[/mm] als auch [mm]e^{x/k} \to \infty[/mm] für [mm]x \to \infty[/mm]. Deshalb können wir die Regel von l'Hospital anwenden und sowohl Zähler als auch Nenner ableiten, ohne dass sich der Grenzwert verändert! D.h. wir können schreiben:
[mm]-k*\limes_{x\rightarrow\infty} \bruch{2x+3k}{e^{x/k}}=-k*\limes_{x\rightarrow\infty} \bruch{2}{\bruch{1}{k}*e^{x/k}}= 0 [/mm], da der Zähler konstant, der Nenner aber immer noch divergent ist.

Jetzt zur Fläche im 1. Quadranten:
Diese geht bei 0 los. Denn ab wann wird die Funktion positiv ? Genau ab dem x, für das gilt
[mm](2x+k)e^{-x/k}=0 \gdw 2x+k=0 \gdw x=-\bruch{k}{2}[/mm] Da aber k positiv sein soll, ist das kleiner 0.
Es ist also genau [mm]I_k=-F(0)[/mm], da wir ja oben gezeigt haben, dass  [mm] \limes_{x\rightarrow\infty} F(x) =0[/mm] ist.

mfg
Daniel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]