www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesformel für Konvertierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - formel für Konvertierung
formel für Konvertierung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

formel für Konvertierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 So 31.10.2004
Autor: RickdaNooki

Hi!
Ich habe eine Ziffernfolge N=z _{n} [mm] z_{n-1} [/mm] ... [mm] z_{1} z_{0} [/mm]   einer natürlichen dualzahl.Zur direkten Umwandlung dieser Dualzahl in eine natürlich Zahl zur basis 4 bzw. 8 kann man folgende Formeln verwenden
[mm] 4^{i} [/mm] ( [mm] z_{2i} [/mm] + [mm] 2z_{2i+1} [/mm] ) = [mm] 4^{i}c_{i} [/mm] bzw. [mm] 8^{i} [/mm] ( [mm] z_{3i} [/mm] + [mm] 2z_{3i +1} [/mm] + [mm] 4z_{3i+2} [/mm] ) = [mm] 8^{i}d_{i} [/mm] (also Ziffern zur Basis 4 bzw 8)
Ich soll beide Formeln benutzen um die duale Zahl 0100101110011 ion eine Zahl zur Basis 4 bzw. 8 zu konvertieren.

Mein Problem sind die Formeln.
Ich weiss nich was ich für i und z einsetzen soll.
Ich weiß was rauskommen soll aber das hilft ja nicht weiter weil ich die formeln benutzen soll.
Kann mir einer helfen wie ich mit den Formeln umzugehen habe?

        
Bezug
formel für Konvertierung: Einige Erklärungen
Status: (Antwort) fertig Status 
Datum: 13:09 Mo 01.11.2004
Autor: Paulus

Hallo Rick

> Hi!
>  Ich habe eine Ziffernfolge N=z _{n} [mm]z_{n-1}[/mm] ... [mm]z_{1} z_{0}[/mm]
>   einer natürlichen dualzahl.Zur direkten Umwandlung dieser
> Dualzahl in eine natürlich Zahl zur basis 4 bzw. 8 kann man
> folgende Formeln verwenden
>  [mm]4^{i}[/mm] ( [mm]z_{2i}[/mm] + [mm]2z_{2i+1}[/mm] ) = [mm]4^{i}c_{i}[/mm] bzw. [mm]8^{i}[/mm] (
> [mm]z_{3i}[/mm] + [mm]2z_{3i +1}[/mm] + [mm]4z_{3i+2}[/mm] ) = [mm]8^{i}d_{i}[/mm] (also
> Ziffern zur Basis 4 bzw 8)
>  Ich soll beide Formeln benutzen um die duale Zahl
> 0100101110011 ion eine Zahl zur Basis 4 bzw. 8 zu
> konvertieren.
>  
> Mein Problem sind die Formeln.
>  Ich weiss nich was ich für i und z einsetzen soll.
>  Ich weiß was rauskommen soll aber das hilft ja nicht
> weiter weil ich die formeln benutzen soll.
>  Kann mir einer helfen wie ich mit den Formeln umzugehen
> habe?
>  

Das müssen wir halt einmal ganz langsam analysieren.
Ich beziehe mich dabei immer auf dieses Beispiel: $n=11_$, diese Ziffernfolge

101101110110

Zum einen: du schreibst:
Ich habe eine Ziffernfolge $N=z _{n} [mm] z_{n-1} [/mm] ... [mm] z_{1} z_{0}$ [/mm] einer natürlichen Dualzahl.

Damit sind die Werte der [mm] $z_k$ [/mm] eigentlich vorgegeben: Jedes $z_$ darf entweder $0_$ oder $1_$ sein. Das ist im Dualsystem so!

Was bedeutet denn diese Ziffernfolge? Per Definition bedeutet sie Folgendes:

[mm] $N=\summe_{k=0}^{n}z_{k}*2^{k}$ [/mm]

Oder ausgeschrieben: (ich ändere dabei die Reihenfolge der Summanden gerade auch noch, d.h. ich lasse $k_$ von $n_$ beginnend nach $0_$ laufen:

[mm] $N=z_{n}*2^{n}+z_{n-1}*2^{n-1}+z_{n-2}*2^{n-2}+z_{n-3}*2^{n-3}+...z_{1}*2^{1}+z_{0}*2^{0}$ [/mm]

Für mein oben angegebenes Beispiel:

[mm] $N=1*2^{11}+0*2^{10}+1*2^{9}+1*2^{8}+0*2^{7}+1*2^{6}+1*2^{5}+1*2^{4}+0*2^{3}+1*2^{2}+1*2^{1}+0*2^{0}$ [/mm]

Untersuchen wir doch mal die Angaben fürs Oktal-System. (Das Vierersystem solltest du dann selber nachvollziehen können)

Du hast geschrieben:

[mm] $8^{i}(z_{3i} [/mm] + [mm] 2z_{3i +1} [/mm] + [mm] 4z_{3i+2}) [/mm] = [mm] 8^{i}d_{i}$ [/mm]

Hier ist offensichtlich [mm] $d_{i}$ [/mm] eine Abkürzung einerseits für den Ausdruck in Klammern, andererseits aber auch eine Ziffer im Oktalsystem.

Vielleicht kehren wir besser die Reihenfolge in der Klammer um, damit es besser mit der allgemeinen ausgeschriebenen Formel korrespondiert:

[mm] $8^{i}(4z_{3i+2} [/mm] + [mm] 2z_{3i +1} [/mm] + [mm] z_{3i}) [/mm] = [mm] 8^{i}d_{i}$ [/mm]

Schauen wir nochmals die Binärzahl an (mein Beispiel, die Verallgemeinerung sollte dir keine Schwierigkeiten bereiten ;-)):

[mm] $N=1*2^{11}+0*2^{10}+1*2^{9}+1*2^{8}+0*2^{7}+1*2^{6}+1*2^{5}+1*2^{4}+0*2^{3}+1*2^{2}+1*2^{1}+0*2^{0}$ [/mm]

Da darf man Klammern setzen (Assoziativgesetz):

[mm] $N=(1*2^{11}+0*2^{10}+1*2^{9})+(1*2^{8}+0*2^{7}+1*2^{6})+(1*2^{5}+1*2^{4}+0*2^{3})+(1*2^{2}+1*2^{1}+0*2^{0})$ [/mm]

Aus den Klammern kann jeweils ausgeklammert werden (Distributivgesetz):

[mm] $N=2^{9}(1*2^{2}+0*2^{1}+1*2^{0})+2^{6}(1*2^{2}+0*2^{1}+1*2^{0})+2^{3}(1*2^{2}+1*2^{1}+0*2^{0})+2^{0}(1*2^{2}+1*2^{1}+0*2^{0})$ [/mm]

Die Zweierpotenzen können als Achterpotenzen angesehen werden, weil der Exponent jeweils eine Dreierzahl ist:

[mm] $N=8^{3}(1*2^{2}+0*2^{1}+1*2^{0})+8^{2}(1*2^{2}+0*2^{1}+1*2^{0})+8^{1}(1*2^{2}+1*2^{1}+0*2^{0})+8^{0}(1*2^{2}+1*2^{1}+0*2^{0})$ [/mm]

Jetzt vergleichst du das mit der oben angegebenen Formel:

Als Exponenten bei der acht habe ich, von links nach rechts: 3,2,1,0.

Die könnte man allgemein mit einem Indes $i_$ versehen:

[mm] $8^{i}$ [/mm] mit $i [mm] \in \{3,2,1,0\}$ [/mm]

Wenn man jetzt versucht, die Indizes der [mm] $z_{?}$ [/mm] innerhalb der zugehörigen Klammern zu berechnen, so sieht man, dass sich der 1. Summand in einer Klammer als $3i+2_$ berechnet, der mittlere Summand zu $3i+1_$ und der 3. Summand zu $3i_$.

Das ist die oben angegeben Formel, so ist das zu interpretieren. Für $i_$ musst du also 0,1,2,3,4,... einsetzen. Bis ca. 1/3 des $n_$.

Der langen Rede kurzer Sinn:

Wenn du eine Dualzahl hast:

101101110110

und die sollt du als Oktalzahl darstellen, dann bildest du von rechts beginnend Dreiergruppen:

101'101'110'110

Je drei Ziffern fasst du als eine Oktalziffer zusammen:

5566

Das ist nämlich [mm] $8^{3}*5+8^{2}*5+8^{1}*6+8^{0}*6$ [/mm]

Oder auch mit deiner obigen Bezeichnung:

[mm] $b_{3}=5; \, b_{2}=5; \, b_{1}=6; \, b_{0}=6$ [/mm]

Ich hoffe, es sei einigermassen klar geworden. Falls nicht, dann frag einfach nach!

Noch besser, du zeigst uns deine Ergebnisse! ;-)

Mit lieben Grüssen

Paul

P.S. Für das Vierersystem bildest du, auch gemäss der Formel, einfach Zweiergrüppchen, fürs Hexadezimalsystem wohl Vierergruppen. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]