fortbestaendige funktion < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:29 Di 12.04.2005 | Autor: | sara_20 |
Ich weiss dass es bestimmt ein anderes wort dafuer gibt, aber da ich nicht aus Deutschland bin, kenne ich die Fachbegriffe der Deutschen Sprache nicht so gut. Ich hoffe, dass ihr dennoch verstehen wir was ich mit "fortbestaendig" meine.
Die Aufgabe lautet:
Beweise dass die Funktion uniform fortbestaendig ist.
[mm]f(x,y)=\begin{cases} \bruch{x^3- xy^2}{x^2 + y^2}, & \mbox{für } (x, y) \ne (0, 0) \\ 0, & \mbox{für } (x, y) = (0, 0) \end{cases}[/mm]
Ich habe versucht zu beweisen dass aps(f(x1,y1)-f(x2,y2))<e d.h.die enfrernun zwischen zwei Funktionswerten unendlich klein zu machen. Schaffte es aber nicht!
Die Loesung schickt bitte an meine e-mail adresse: irma_tanovic@hotmail.com
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
edit:mathemaduenn
"uniform fortbeständig"="uniformly continuous"="gleichmäßig stetig"
|
|
|
|
Hallo sara_20,
Zunächst möchte ich Dir zu deinem sehr guten Deutsch gratulieren. Was uniform fortbeständig heißen soll weiß ich trotzdem nicht. Ich könnte "gleichmäßig stetig" raten???? Schreib doch einfach die Definition. Die ist international.
Soll die Funktion so aussehen?
[mm]f(x,y)=\begin{cases} \bruch{x^3- xy^2}{x^2 + y^2}, & \mbox{für } (x, y) \ne (0, 0) \\ 0, & \mbox{für } (x, y) = (0, 0) \end{cases}[/mm]
> Die Loesung schickt bitte an meine e-mail adresse:
Die e-mail Adresse zu veröffentlichen ist eine schlechte Idee, wenn Du keine Spam-mails erhalten willst. Du wirst aber über Antworten im Forum per Mail informiert.
viele Grüße
mathemaduenn
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:19 Do 14.04.2005 | Autor: | sara_20 |
Hallo mal wieder,
ich habe nach dem Begriff gesucht den ich brauchte, und, ja: es heisst "uniform stetig". Die Funktion lautet so wie du sie geschrieben hast. Leider finde ich mich noch nicht so gut zurecht mit den Formeln d.h. sie zu schreiben. Gibt es eine Moeglichkeit sie in Mathematica (Wolfram Research) zu schreiben und sie dann nur hier zu implementieren?
Ausserdem, die Aufgabe lautet: Ist diese Funktion uniform stetig? Ich vermute dass sie es ist, aus zwei gruenden, kann es aber nicht beweisen. Der erste Grund ist: Konnte nicht beweisen dass sie es nicht ist.
Der zweite Grund: Habe sie in Mathematica gezeichnet.
|
|
|
|
|
Hallo sara_20,
> ich habe nach dem Begriff gesucht den ich brauchte, und,
> ja: es heisst "uniform stetig". Die Funktion lautet so wie
> du sie geschrieben hast.
Ich hab deinen ersten Beitrag mal editiert ich hoffe du hast nichts dagegen
> so gut zurecht mit den Formeln d.h. sie zu schreiben. Gibt
> es eine Moeglichkeit sie in Mathematica (Wolfram Research)
> zu schreiben und sie dann nur hier zu implementieren?
Leider nein. Du kannst aber folgendermaßen [mm]\LaTeX[/mm] verwenden.
[mm] LaTeX Formeln [/mm]
zur Aufgabe:
Ich würde Transformation in Polarkoordinaten vorschlagen:
[mm]x=r*sin\phi[/mm]
[mm]y=r*cos\phi[/mm]
Wegen [mm]x^2+y^2=r^2[/mm] müsste das vieles vereinfachen.
viele Grüße
mathemaduenn
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:32 Fr 15.04.2005 | Autor: | Julius |
Hallo Irma!
Also, Christians Ansatz mit Polarkoordinaten funktioniert einwandfrei!
Mit [mm] $(x_1,y_1)=(r_1\cos(\varphi_1),r_1\sin(\varphi_1))$ [/mm] und [mm] $(x_2,y_2)=(r_2\cos(\varphi_2),r_2\sin(\varphi_2))$ [/mm] gilt:
[mm] $\left\vert \frac{x_1^3-x_1y_1^2}{x_1^2+y_1^2} - \frac{x_2^3-x_2y_2^2}{x_2^2+y_2^2} \right\vert$
[/mm]
$= [mm] \left\vert\frac{r_1 \cos(\varphi_1) \cdot (r_1^2 \cos^2(\varphi_1) - r_1^2 \sin^2(\varphi_1)}{r_1^2} - \frac{r_2 \cos(\varphi_2) \cdot (r_2^2 \cos^2(\varphi_2) - r_2^2 \sin^2(\varphi_2)}{r_2^2} \right\vert$
[/mm]
$= [mm] \left\vert r_1 \cos(\varphi_1) \cdot (\cos^2(\varphi_1) - \sin^2(\varphi_1)) - r_2 \cos(\varphi_2) \cdot (\cos^2(\varphi_2) - \sin^2(\varphi_2))\right\vert$
[/mm]
[mm] $\le \left\vert r_1 \cos(\varphi_1) \cdot (\cos^2(\varphi_1) - \sin^2(\varphi_1)) - r_1 \cos(\varphi_2) \cdot (\cos^2(\varphi_2) - \sin^2(\varphi_2)) \right\vert [/mm] + [mm] \left\vert r_1 \cos(\varphi_2) \cdot (\cos^2(\varphi_2) - \sin^2(\varphi_2)) - r_2 \cos(\varphi_2) \cdot (\cos^2(\varphi_2) - \sin^2(\varphi_2))\right\vert$.
[/mm]
Man kommt jetzt leicht zum Ziel, wenn man
a) die Beschränktheit der trigonometrischen Funktionen und
b) die gleichmäßige Stetigkeit der trigonometrischen Funktionen (stetige Funktionen auf Kompakta)
ausnutzt und kann so die gleichmäßige Konvergenz auf [mm] $\IR^2\setminus \{(0,0)\}$ [/mm] zeigen. Anschließend verbleibt noch die Stetigkeit in $(0,0)$ zu beweisen. Dies ist aber (ähnlich wie oben) machbar.
Viele Grüße
Julius
|
|
|
|