www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwertefrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - frage
frage < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

frage: Eigenwerte
Status: (Frage) beantwortet Status 
Datum: 16:54 Mo 25.04.2005
Autor: wee

Hallo, kann mir jemand bei folgender Aufgabe helfen:

Seien f und g Endomorphismen des K-Vektorraumes V. Zeige:

a) Ist v [mm] \in [/mm] V Eigenvektor von f [mm] \circ [/mm] g zum Eigenwert [mm] \lambda \in [/mm] K und ist g(v) [mm] \not= [/mm] 0, so ist g(v) Eigenvektor von g [mm] \circ [/mm] f zum Eigenwert [mm] \lambda [/mm]

b) Ist V endlich dimensional, so haben f [mm] \circ [/mm] g und g [mm] \circ [/mm] f dieselben Eigenwerte.

Teil a) ist gelöst. Kann man bei b) von f [mm] \circ [/mm] g = g [mm] \circ [/mm] f ausgehen?

        
Bezug
frage: Eigenwerte
Status: (Antwort) fertig Status 
Datum: 17:23 Mo 25.04.2005
Autor: c.t.

Hallo wee,

da die aussage symmetrisch in f und g ist, genügt es, eine inklusion zu zeigen, d.h. wir brauchen nur nachzuweisen, dass alle eigenwerte von f [mm] \circ [/mm] g auch eigenwerte von g [mm] \circ [/mm] f sind.
Für g(v) [mm] \not= [/mm] 0 hast du das schon in a) gezeigt. ist g(v) =0, so folgt [mm] \lambda [/mm] =0. in diesen fall zeigt man jetzt, dass ker(g [mm] \circ [/mm] f) [mm] \not= [/mm] 0. wegen v [mm] \in [/mm] ker (g) ist für den fall zu zeigen f [mm] \cap [/mm] ker (g) [mm] \not= [/mm] {0} alles klar. gilt im(f) [mm] \cap [/mm] ker(g) ={0}, so ist f nicht surjektiv, also auch nicht injektiv ( das müsstest du in der vorlesung gehabt haben ) , also ist ker(f) [mm] \not= [/mm] {0} und somit ker(g [mm] \circ [/mm] f) [mm] \not= [/mm] {0}.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]