www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenfunktionenreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - funktionenreihe
funktionenreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Mi 02.04.2008
Autor: mini111

hallöchen

ich habe schwierigkeiten bei dieser aufgabe:
geben sie eine begründete antwort auf die frage ob die funktionsreihe [mm] \summe_{k=0}^{\infty} (sin(x)*cos(x))^k [/mm] auf [mm] [-\pi/2,\pi/2] [/mm] gleichmäßig konvergiert.Hinweis:sin pi/4=cos [mm] pi/4=1/\wurzel{2} [/mm]
Das müsste ja dann das gemeinsame supremum sein oder?kann man das dann zu eine konvergenten majorante basteln oder so?

grüße

        
Bezug
funktionenreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Mi 02.04.2008
Autor: zahllos

Hallo mini111,

du liegst mit deiner Vermutung schon ganz richtig. Um eine Majorante zu inden, musst du den Betrag von sin(x)cos(x) abschätzen. Betrachte die Funktion g(x) = sin(x)cos(x) . Die hat bei x = [mm] \frac{\pi}{4} [/mm] eine Maximalstelle, des Maximum ist [mm] \frac{1}{2} [/mm] (Verwendung von erster und zweiter Ableitung, wie üblich!).
Damit kannst du jedes Glied der Funktionenreihe durch [mm] \frac{1}{2^k} [/mm] majorisieren, das ist aber gerade eine geometrische Reihe, also konvergent.
Die Wert der gegebenen Funktionenreihe ist somit immer [mm] \le [/mm] 2 !

Bezug
                
Bezug
funktionenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:34 Do 03.04.2008
Autor: mini111

hallo,

also erstmal danke für deine hilfe aber so ganz verstanden habe ichs leider noch net.also du sagtest ja das man durch die übliche extrmwertbestimmung auf [mm] x=\pi/4 [/mm] als extremum kommt aber wenn man die 2 ersten ableitungen bildet also
f'(x)=-cos(x)*sin(x) für die =0 bekomme ich x= [mm] \pi/2 [/mm] und [mm] \pi,wobei \pi [/mm] ja nicht DB liegt.also habe ich jetzt [mm] \pi/2 [/mm] in die 2. ableitung eingesetzt,also [mm] f"(\pi/2)=sin(\pi/2)*cos(\pi/2)=0 [/mm] deshalb verstehe ich jetzt nicht ganz wie man auf [mm] x=\pi/4 [/mm] kommt,durch die ableitungen.?

viele grüße

Bezug
                        
Bezug
funktionenreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Do 03.04.2008
Autor: rainerS

Hallo!

> also erstmal danke für deine hilfe aber so ganz verstanden
> habe ichs leider noch net.also du sagtest ja das man durch
> die übliche extrmwertbestimmung auf [mm]x=\pi/4[/mm] als extremum
> kommt aber wenn man die 2 ersten ableitungen bildet also
>  f'(x)=-cos(x)*sin(x) für die =0 bekomme ich x= [mm]\pi/2[/mm] und
> [mm]\pi,wobei \pi[/mm] ja nicht DB liegt.

Deine Ableitung stimmt nicht.

$$ f'(x) = [mm] \cos^2(x) [/mm] - [mm] \sin^2(x) [/mm] $$

Übrigens kannst du das noch einfacher rechnen, wenn du bedenkst, dass

$$ [mm] \sin(x) \cos(x) [/mm] = [mm] \bruch{1}{2} \sin(2x) [/mm] $$

ist.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]