funktionsgleichung aufstellen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:55 Sa 11.02.2006 | Autor: | mana |
Aufgabe | Es ist eine Funktion 2. Grades gegeben, mit dem Achsenabschnitt -6. Im 4. Quadranten schließt der Graph mit der x-Achse über dem Intervall [0;1] eine Fläche von 11 FE ein. Ermittle die Funktionsgleichung. |
mein Ansatz ist: f(x)= [mm] ax^2+bx+c
[/mm]
[mm] S_{y}(0/-6) [/mm] also c= -6
[mm] \integral_{0}^{1}{f(x) dx}= 1/3ax^3+1/2bx^2+cx [/mm] in den Grenzen 0 und 1.
Aber ich komme nicht weiter, weil hier dann eine Bedingung fehlt??? oder ist in der Augabenstellung noch was versteckt, was ich nicht sehe.
Eine Abhängigkeit der Unbekannten ist ausgeschlossen.
danke im Vorraus
|
|
|
|
Hallo!
> Es ist eine Funktion 2. Grades gegeben, mit dem
> Achsenabschnitt -6. Im 4. Quadranten schließt der Graph mit
> der x-Achse über dem Intervall [0;1] eine Fläche von 11 FE
> ein. Ermittle die Funktionsgleichung.
> mein Ansatz ist: f(x)= [mm]ax^2+bx+c[/mm]
>
> [mm]S_{y}(0/-6)[/mm] also c= -6
>
> [mm]\integral_{0}^{1}{f(x) dx}= 1/3ax^3+1/2bx^2+cx[/mm] in den
> Grenzen 0 und 1.
>
> Aber ich komme nicht weiter, weil hier dann eine Bedingung
> fehlt??? oder ist in der Augabenstellung noch was
> versteckt, was ich nicht sehe.
> Eine Abhängigkeit der Unbekannten ist ausgeschlossen.
> danke im Vorraus
Also, eine Lösung habe ich gerade auch nicht, aber wieso nimmst du das Integral in den Grenzen 0 und 1? Die Fläche, die eine Funktion einschließt, geht doch immer bis zu einer Nullstelle der Funktion, und die kennst du hier doch gar nicht, oder? Evtl. könnte das aber eine noch fehlende Bedingung sein. Ansonsten könnte vielleicht noch helfen, dass die Fläche im vierten Quadranten liegt, dass also die Funktion für positive x-Werte unterhalb der x-Achse liegt.
Hilft dir das vielleicht etwas?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:53 Sa 11.02.2006 | Autor: | mana |
ich nehme die Grenzen 0 und 1, weil das so in der Aufgabenstellung gegeben war!!! wieso kann man nur Flächen von Nullstelle zu Nullstelle berechnen. Man kann doch irgendeine Fläche zwischen zwei Grenzen berechnen, solange der Graph nicht zwischen diesen Grenzen keine Nullstellen hat oder??? und da´-6 y-Achsenabschnitt ist und der Graph auch bei 1 im 4. Quadranten liegt, hat der hier keine Nullstelle.
|
|
|
|
|
Hallo!
> ich nehme die Grenzen 0 und 1, weil das so in der
> Aufgabenstellung gegeben war!!! wieso kann man nur Flächen
> von Nullstelle zu Nullstelle berechnen. Man kann doch
> irgendeine Fläche zwischen zwei Grenzen berechnen, solange
> der Graph nicht zwischen diesen Grenzen keine Nullstellen
> hat oder??? und da´-6 y-Achsenabschnitt ist und der Graph
> auch bei 1 im 4. Quadranten liegt, hat der hier keine
> Nullstelle.
Oh sorry, da habe ich die Aufgabenstellung nicht gut genug gelesen. Ich dachte, es hieße: die Funktion schließt im vierten Quadranten die Fläche sowieso ein. Und dann hätte man die Nullstellen nehmen müssen.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:11 So 12.02.2006 | Autor: | leduart |
Hallo Mana
> Es ist eine Funktion 2. Grades gegeben, mit dem
> Achsenabschnitt -6. Im 4. Quadranten schließt der Graph mit
> der x-Achse über dem Intervall [0;1] eine Fläche von 11 FE
> ein. Ermittle die Funktionsgleichung.
Ich find, die Aufgabe ist fies gestellt, Aber der Satz: schließt mit der x Achse eine Fläche.... ein, läßt sich so deuten, dass bei 1 ne Nullstelle sein MUSS!
sonst müsste es heissen mit der xAchse und einer vertikalen Linie.
Find ich auch ein bissel ungewöhnlich, bin aber überzeugt, dass es so gemeint ist.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:18 So 12.02.2006 | Autor: | Herby |
Hallo Mana,
und ein kleiner Tipp noch:
das Integral hat den Wert 11 - du kannst z.B. eine Konstante K in die quadratische Gleichung schmuggeln und danach in der Stammfunktion auflösen.
so halt: [mm] K*(ax^{2}+bx+c)
[/mm]
Liebe Grüße
Herby
|
|
|
|