www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisfunktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - funktionsschar
funktionsschar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionsschar: Extrempunkt
Status: (Frage) beantwortet Status 
Datum: 15:07 Fr 01.04.2005
Autor: joimic

hey
könnt ihr mir bitte helfen
die funktionsschar [mm] f(x)=1/4*x^3-3/8(k+6)x²+9/2kx+(27-27/2*k) [/mm]
sollen alle durch (6/0) laufen
also hab  ich x=6 gesetzt, gleichung gleich 0, und aufgelöst.
dann erhielt ich für k 1, das wiederum eingesetzt und gleichung stimmte.
ich versteh aber nicht wieso :-)
desweiteren sollen sie dort einen extrempunkt haben
ich komme aber nicht auf ein ergebnis. ich habe zwar die erste ableitung gemacht um extrema nachzuweisen, komme aber nicht auf das ergebnis 6

extrema soll es nur für k ungleich null geben. was passiert denn wenn k=6 ist?

bitte um hilfe
danke

        
Bezug
funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Fr 01.04.2005
Autor: Zwerglein

Hi, joimic,

>  die funktionsschar
> [mm]f(x)=1/4*x^3-3/8(k+6)x²+9/2kx+(27-27/2*k)[/mm]
> sollen alle durch (6/0) laufen
>  also hab  ich x=6 gesetzt, gleichung gleich 0, und
> aufgelöst.
>  dann erhielt ich für k 1, das wiederum eingesetzt und
> gleichung stimmte.

Naja: Wenn's für alle k stimmen soll, dann stimmt's für k=1 natürlich auch! Dennoch stimmt an Deiner Rechnung was nicht: Es soll nämlich gar kein k ausgerechnet werden, weil alles wegfällt, wenn Du x=6 setzt:
f(6) = 54 - 13,5k - 81 + 27k + 27 - 13,5k = 0
Nix bleibt übrig!
Der Punkt (6;0) liegt wirklich auf allen Graphen drauf!  

>  desweiteren sollen sie dort einen extrempunkt haben
>  ich komme aber nicht auf ein ergebnis. ich habe zwar die
> erste ableitung gemacht um extrema nachzuweisen, komme aber
> nicht auf das ergebnis 6

Vielleicht stimmt ja Deine Ableitung nicht. Ich hab' folgendes raus:
f'(x) = [mm] \bruch{3}{4}*x^{2} [/mm] - [mm] \bruch{3}{4}*(k+6)*x [/mm] + [mm] \bruch{9}{2}*k [/mm]

Wenn Du da jetzt x=6 einsetzt, kommt wieder =0 raus:
f'(6) = [mm] \bruch{3}{4}*36 [/mm] - [mm] \bruch{3}{4}*(k+6)*6 [/mm] + [mm] \bruch{9}{2}*k [/mm]
= 27 - 4,5k - 27 + 4,5k = 0 (q.e.d.)
  

> extrema soll es nur für k ungleich null geben. was passiert
> denn wenn k=6 ist?

Da hast Du Dich wohl vertippt und meinst: Extrema soll es nur für k [mm] \not= [/mm] 6 geben!

Naja: rechne halt auch die 2. Ableitung aus: f''(x) = [mm] \bruch{3}{2}*x-\bruch{3}{4}*(k+6) [/mm]

Wenn Du da nun x=6 einsetzt, kriegst Du:

f''(6) = 9 - 0,75k - 4,5.
Dieses wird =0, wenn k=6 ist: 9 - 0,75*6 - 4,5 = 0.
f'''(6) ist für k=6 aber nicht =0,

daher hat die Funktion  für k=6 einen Wendepunkt. Da dort aber auch die 1.Ableitung =0 war (siehe oben) ist es sogar ein Terrassenpunkt
und weil auch f(6)=0 ist liegt der auf der x-Achse (dreifache Nullstelle!)

Ist k aber nicht 6, so ist die 2.Ableitung bei x=6 nicht 0, also gibt es dort einen Extrempunkt (doppelte Nullstelle von f(x)).

Klaro?



Bezug
                
Bezug
funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Fr 01.04.2005
Autor: joimic

wow, super erklärung
und jetzt habe ich auch endlich kapiert was eine doppelte nullstelle ist, und was ein terassenpunkt ist
großes dankeschön
mach weiter so

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]