geht es per Induktion? < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeige: [mm] det\pmat{ 1 & ... & 1 \\ a_{1} & ... & a_{n} \\ a_{1}^{2} & ... & a_{n}^{2} \\ \vdots & & \vdots \\ a_{1}^{n-1} & ... & a_{n}^{n-1} } [/mm] = [mm] \produkt_{j,i\in \{1,..,n\} ; j>n}(a_{j}-a_{i}) [/mm] |
Hallo, diese meiner Meinung nach merkwürdige Aufgabe lässt mich nun schon einge Tage nicht los.
bislang konnte ich zeigen, dass
[mm] det\pmat{ 1 & ... & 1 \\ a_{1} & ... & a_{n} \\ a_{1}^{2} & ... & a_{n}^{2} \\ \vdots & & \vdots \\ a_{1}^{n-1} & ... & a_{n}^{n-1} }= det\pmat{ a_{2}-a_{1} & ... & a_{n}-a_{1} \\ a_{2}^{2}-a_{1}^{2} & ... & a_{n}^{2}-a_{1}^{2} \\ \vdots & & \vdots } [/mm] gilt.
Doch nun komme ich nicht weiter. Ich habe es mit dem Entwicklungssatz nach einer Zeile bzw Spalte probiert, und versucht das per Induktion zu machen. Leider bin ich weder noch zu einem Ergebnis gekommen, denn irgendwie konnte ich da dann kein Muster erkennen wie ich die Potenzen zusammenfassen kann.
Es wäre spitze, wenn ihr mir verraten würdet, was der richtige Weg ist.
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:50 Sa 24.04.2010 | Autor: | ullim |
Hi,
multipliziere die (n-1)-te Zeile mit [mm] a_1 [/mm] und ziehe dies von der n-ten Zeile ab. Dann multipliziere die (n-2)-te Zeile mit [mm] a_1 [/mm] und ziehe dies von der (n-1)-ten Zeile ab usw. Du erhälst dann folgende Determinante
[mm] det\pmat{ 1 & 1 & ... & 1 \\ 0 & a_2-a_1 & ... &a_n-a_1 \\ 0 & (a_2-a_1)*a_2 & ... & (a_n-a_1)*a_n \\ \vdots & & \vdots \\ 0 & (a_2-a_1)*a_2^{n-2} & ... & (a_n-a_1)*a_n^{n-2} }
[/mm]
Das nach der ersten Spalte entwickeln ergibt
[mm] det\pmat{ a_2-a_1 & ... &a_n-a_1 \\ (a_2-a_1)*a_2 & ... & (a_n-a_1)*a_n \\ \vdots & & \vdots \\ (a_2-a_1)*a_2^{n-2} & ... & (a_n-a_1)*a_n^{n-2} }
[/mm]
Die gemeinsamen Faktoren [mm] (a_2-a_1) [/mm] , ... , [mm] (a_n-a_1) [/mm] kann man herausziehen und man erhält
[mm] (a_2-a_1)* [/mm] ... [mm] *(a_n-a_1)*det\pmat{ 1 & ... & 1 \\ a_{2} & ... & a_{n} \\ a_{2}^{2} & ... & a_{n}^{2} \\ \vdots & & \vdots \\ a_{2}^{n-2} & ... & a_{n}^{n-2} }
[/mm]
Jetzt hat man das Problem auf die Berechnung einer Determinate der gleichen Form, aber eine Dimension kleiner, zurückgeführt, und man kann die Lösung mit vollständiger Induktion zeigen.
[mm] det\pmat{ 1 & ... & 1 \\ a_{1} & ... & a_{n} \\ a_{1}^{2} & ... & a_{n}^{2} \\ \vdots & & \vdots \\ a_{1}^{n-1} & ... & a_{n}^{n-1} }=\produkt_{i>j}^{ }(a_i-a_j)
[/mm]
Das Stichwort ist hier Vandermondesche Determinante.
|
|
|
|