www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)gemeinsame Verteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - gemeinsame Verteilungsfunktion
gemeinsame Verteilungsfunktion < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsame Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Fr 30.09.2011
Autor: jolli1

Aufgabe
F(x,y) bezeichnet den Wert einer gemeinsamen Verteilungsfunktion zweier stetiger Zufallsvariablen X und Y am Punkt (x,y). Geben Sie [mm] P(a\leX\leb, c\leX\led) [/mm] als Funktion von F(a,c) , F(a,d), F(b,c) und F(b,d) an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo,

ich weiß nicht genau wie ich das notieren soll.

Ich dachte für F(a,c) an sowas hier:
[mm] \integral_{-\infty}^{a}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx} [/mm] f(x,y) dx dx

Und für F(b,c)
[mm] \integral_{a}^{b}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx} [/mm]

Wäre lieb, wenn ihr das korrigieren könntet

Liebe Grüße

        
Bezug
gemeinsame Verteilungsfunktion: Tipp: zeichnen !
Status: (Antwort) fertig Status 
Datum: 15:12 Fr 30.09.2011
Autor: Al-Chwarizmi


> F(x,y) bezeichnet den Wert einer gemeinsamen
> Verteilungsfunktion zweier stetiger Zufallsvariablen X und
> Y am Punkt (x,y). Geben Sie [mm]P(a\leX\leb, c\leX\led)[/mm] als
> Funktion von F(a,c) , F(a,d), F(b,c) und F(b,d) an.

Hallo jolli1,

zuerst musste ich mal den Aufgabentext richtig lesbar machen:

Aufgabe
F(x,y) bezeichnet den Wert einer gemeinsamen
Verteilungsfunktion zweier stetiger Zufallsvariablen X und
Y am Punkt (x,y). Geben Sie [mm]P(a\le X\le b\ ,\ c\le X\le d)[/mm] als
Funktion von F(a,c) , F(a,d), F(b,c) und F(b,d) an.



  

> Hallo,
>  
> ich weiß nicht genau wie ich das notieren soll.
>  
> Ich dachte für F(a,c) an sowas hier:
>  [mm]\integral_{-\infty}^{a}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx}[/mm]
> f(x,y) dx dx
>  
> Und für F(b,c)
>  [mm]\integral_{a}^{b}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx}[/mm]


Da ist bei beiden Beispielen die Zufallsvariable Y ganz
außen vor geblieben. Das kann nicht sein !

Für F(a,c) kann man schreiben (falls es zur Verteilungsfunktion
F eine zugehörige Dichtefunktion f gibt) :

     $\ F(a,c)\ =\ [mm] \integral_{x=-\infty}^{a}\left(\ \integral_{y=-\infty}^{c}f(x,y)\,dy\right)\, [/mm] dx$

Zur Lösung der Aufgabe ist es sehr hilfreich, sich die Inte-
grationsgebiete für alle vorkommenden Doppelintegrale
graphisch klar zu machen !

LG   Al-Chw.


Bezug
                
Bezug
gemeinsame Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Fr 30.09.2011
Autor: jolli1

vielen lieben dank,

jetzt kapier ichs. dankeschön !!!!:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]