www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikgeneigte Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - geneigte Kurve
geneigte Kurve < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Mo 12.11.2012
Autor: Duckx

Hallo ich habe eine Aufgabe bei der ich den Neigungswinkel [mm] $\alpha$ [/mm] einer Kurve als Funktion von v,r und g angeben soll. Damit soll ich dann den Neigungswinkel angeben damit die Kurve r=100m v=60km/h auch bei absolutem glatteis durchfahren werden kann.

Ich habe also erst einmal so gerechnet:
[mm] $-f_s=m \cdot{} (-\frac{v^2}{r})$ [/mm]
[mm] $f_{s,max}=\mu_H \cdot{} F_N$ [/mm]
[mm] $F_N=F_G \cdot{} cos\alpha$ [/mm]
[mm] $-(\mu_H \cdot{} F_G \cdot{} [/mm] cos [mm] \alpha)=m \cdot{} (-\frac{v^2}{r})$ [/mm]
Bei Glatteis ist [mm] $\mu_H=0$ [/mm] oder?
Dann hätte ich die Gleichung:
[mm] $cos\alpha=\frac{v^2}{g \cdot{} r \cdot{} 0} [/mm]

Das würde dann Allerdings nicht funktionieren wenn keine Haftreibung existiert. Was mache ich falsch?

        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 12.11.2012
Autor: reverend

Hallo Duckx,

so ein paar Formelzeichen solltest Du vielleicht erläutern, das macht das Lesen erheblich einfacher...

> Hallo ich habe eine Aufgabe bei der ich den Neigungswinkel
> [mm]\alpha[/mm] einer Kurve als Funktion von v,r und g angeben soll.
> Damit soll ich dann den Neigungswinkel angeben damit die
> Kurve r=100m v=60km/h auch bei absolutem glatteis
> durchfahren werden kann.

Super Aufgabenstellung. Wie hält man denn bei absolutem Glatteis die Geschwindigkeit? Der Luftwiderstand bleibt ja. ;-)

> Ich habe also erst einmal so gerechnet:
>  [mm]-f_s=m \cdot{} (-\frac{v^2}{r})[/mm]

Aha. Fliehkraft/Zentrifugalkraft.

>  [mm]f_{s,max}=\mu_H \cdot{} F_N[/mm]
>  
> [mm]F_N=F_G \cdot{} cos\alpha[/mm]
>  [mm]-(\mu_H \cdot{} F_G \cdot{} cos \alpha)=m \cdot{} (-\frac{v^2}{r})[/mm]

Du brauchst einen reibungsfreien Ansatz.
Das Fahrzeug fährt auf einer seitlich geneigten Fahrbahn.
Zwei Kräfte greifen an, die Gewichtskraft und die Zentrifugalkraft, die senkrecht zueinander stehen, gerade in Richtung der Koordinatenachsen.

Die sollst Du jetzt wegen der Fahrzeugneigung umrechnen in die Andruckkraft (senkrecht zur Fahrzeugoberfläche und hier vollkommen unerheblich) und eine zweite Komponente parallel zur Fahrzeugoberfläche. Dabei müssen sich der aus der Gewichtskraft und der aus der Zentrifugalkraft resultierende Anteil gegenseitig aufheben.

> Bei Glatteis ist [mm]\mu_H=0[/mm] oder?
>  Dann hätte ich die Gleichung:
>  [mm]$cos\alpha=\frac{v^2}{g \cdot{} r \cdot{} 0}[/mm]

Igitt. Es sollte Dir auffallen, dass Du da gerade durch Null teilst.

> Das würde dann Allerdings nicht funktionieren wenn keine
> Haftreibung existiert. Was mache ich falsch?

Geh mal über die oben genannten Kräfte, dann klappt das schon.
Eine kleine Skizze hilft...

Grüße
reverend


Bezug
                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Mo 12.11.2012
Autor: Duckx

Ich habe jetzt eine Skizze gemacht

Was meinst du mit dem "anteil" von der Zentrifugalkraft und der Gewichtskraft?
Wie muss ich jetzt weiter machen?
[mm] $F=sin\alpha \cdot{} F_G$ [/mm]
[mm] $F_N=\cos\alpha \cdot{} F_G$ [/mm]
[mm] $F_G=F_G\cdot{} [/mm] (sin [mm] \alpha [/mm] + [mm] cos\alpha)$?[/mm]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
geneigte Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Mo 12.11.2012
Autor: Duckx

kann mir da niemand weiterhelfen? Ich möchte es wirklich verstehen.

Bezug
                                
Bezug
geneigte Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Mo 12.11.2012
Autor: reverend

Hallo,

> kann mir da niemand weiterhelfen? Ich möchte es wirklich
> verstehen.

Du drängelst zu schnell. Manchmal ist halt gerade keiner da, der kann oder will.

Anwort kommt gleich.

lg
rev


Bezug
                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 12.11.2012
Autor: reverend

Hallo nochmal,

irgendwie würde ich den Neigungswinkel woanders einzeichnen, aber eigentlich ist es egal.

> Ich habe jetzt eine Skizze gemacht

Ohne die Skizze wären Deine Formelzeichen nicht zu verstehen, so geht es gerade noch.

> Was meinst du mit dem "anteil" von der Zentrifugalkraft und
> der Gewichtskraft?
>  Wie muss ich jetzt weiter machen?
>  [mm]F=sin\alpha \cdot{} F_G[/mm]
>  [mm]F_N=\cos\alpha \cdot{} F_G[/mm]

F ist also der Anteil parallel zur Fahrbahnoberfläche, [mm] F_N [/mm] der Anteil senkrecht dazu. Das ist soweit richtig.

Damit hast Du aber bisher nur die Gewichtskraft des Fahrzeugs "zerlegt" bzw. im gedrehten Koordinatensystem dargestellt.

Das gleiche musst Du nun noch mit der Zentrifugalkraft machen.

> [mm]F_G=F_G\cdot{} (sin \alpha + cos\alpha)[/mm]?

Nein, das ist Unsinn. Hier gilt Pythagoras!

Grüße
reverend


Bezug
                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Mo 12.11.2012
Autor: Duckx

Ok dann ist also [mm] $F_G=\wurzel{2F_G^2+sin^2\alpha+cos^2\alpha}$? [/mm]
Wie schreibe ich es denn am besten verständlicher auf?
Wirkt die Zentrifugalkraft also nicht senkrecht auf die Gewichtskraft?
Ich hätte gedacht die Zentrifugalkraft bleibt [mm] $\frac{mv^2}{r}$ [/mm]

Bezug
                                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Mo 12.11.2012
Autor: reverend

Hi.

> Ok dann ist also
> [mm]F_G=\wurzel{2F_G^2+sin^2\alpha+cos^2\alpha}[/mm]?

Nein. [mm] F_G=\wurzel{(F_G*\sin{\alpha})^2+(F_G*\cos{\alpha})^2}=F_G [/mm]

Das musst Du doch nicht überprüfen. [mm] F_G [/mm] ist hier ein Parameter, also eine feste Größe.

>  Wie schreibe ich es denn am besten verständlicher auf?

Gar nicht. Das trägt nichts zur Aufgabe bei.

>  Wirkt die Zentrifugalkraft also nicht senkrecht auf die
> Gewichtskraft?

Doch. Aber das Fahrzeug fährt ja auf einer geneigten Oberfläche.

>  Ich hätte gedacht die Zentrifugalkraft bleibt
> [mm]\frac{mv^2}{r}[/mm]

Natürlich. Trotzdem musst Du sie in das geneigte Koordinatensystem überführen, und da hat sie dann eben zwei Komponenten.

Das geht im Prinzip genauso wie bei [mm] F_G. [/mm]

Grüße
reverend


Bezug
                                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mo 12.11.2012
Autor: Duckx

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

also dann wäre
$F_Z=\wurzel{(F_Z \cdot {} cos\alpha)^2 + (F_Z \cdot {} sin\alpha)$?

Bezug
                                                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mo 12.11.2012
Autor: reverend

Meine Güte.

Vergiss diese Rechnung!

[mm] \sin^2{\alpha}+\cos^2{\alpha}=1 [/mm] für alle [mm] \alpha. [/mm]
Das nennt man den "trigonometrischen Pythagoras".
Damit kannst Du nachrechnen, ob Deine Zerlegungen stimmen, aber ansonsten brauchst Du das hier doch überhaupt nicht. Gar nicht.
An keiner Stelle.

Gegeben sind [mm] F_G [/mm] und [mm] F_Z. [/mm] Die sollst Du jetzt in das schräge Koordinatensystem überführen, nichts weiter.

Der jeweilige Anteil von [mm] F_G [/mm] und [mm] F_Z [/mm] parallel zur Fahrbahnoberfläche sollen sich gegenseitig aufheben.
Um mehr geht es nicht.
Wie groß sind nun diese beiden Anteile?

Dann kannst Du die Grundformeln für [mm] F_G=m*g [/mm] und [mm] F_Z=\bruch{m*v^2}{r} [/mm] einsetzen und hast eine Gleichung, aus der man [mm] \alpha [/mm] bestimmen kann. m wird sich dabei herauskürzen.

Also hör auf, ständig nachzurechnen, ob Deine Kräfte nach der Zerlegung noch so groß sind wie vorher, sondern konzentrier Dich auf das, worum es in der Aufgabe geht.

Grüße
reverend


Bezug
                                                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 12.11.2012
Autor: Duckx

Entschuldigung aber ich verstehe es nicht ganz. Wie überführe ich [mm] $F_Z$ [/mm] und [mm] $F_G$ [/mm] denn in das schräge Koordinatensystem?
Ich hätte jetzt gesagt:
[mm] $F_G \cdot{} [/mm] sin [mm] \alpha= F_Z \cdot{} cos\alpha$ [/mm]

Bezug
                                                                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mo 12.11.2012
Autor: reverend

Hallo,

> Entschuldigung aber ich verstehe es nicht ganz. Wie
> überführe ich [mm]F_Z[/mm] und [mm]F_G[/mm] denn in das schräge
> Koordinatensystem?

Das hast Du doch vorhin für [mm] F_G [/mm] schon völlig richtig gemacht!

Da hattest Du die Lateralkraft (also: seitlich wirkend) als F bezeichnet und die Normalkraft (also: senkrecht zur Fahrbahn wirkend) als [mm] F_N [/mm] und herausgefunden:

[mm] F=F_G*\sin{\alpha} [/mm]
[mm] F_N=F_G*\cos{\alpha} [/mm]

>  Ich hätte jetzt gesagt:
>  [mm]F_G \cdot{} sin \alpha= F_Z \cdot{} cos\alpha[/mm]

Und aus welchem Himmel ist jetzt auf einmal diese richtige Gleichung gefallen? Dazu musstest Du doch [mm] F_Z [/mm] in zwei Komponenten zerlegen.

Grüße
reverend


Bezug
                                                                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mo 12.11.2012
Autor: Duckx

ok aber bei [mm] $F_Z$ [/mm] bin ich mir nicht sicher:
[mm] $F_1=F_Z \cdot{} cos\alpha$ [/mm]
[mm] $F_2=F_Z \cdot{} [/mm] sin [mm] \alpha$ [/mm]

Bezug
                                                                                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 12.11.2012
Autor: reverend

Hi,

> ok aber bei [mm]F_Z[/mm] bin ich mir nicht sicher:
>  [mm]F_1=F_Z \cdot{} cos\alpha[/mm]
>  [mm]F_2=F_Z \cdot{} sin \alpha[/mm]

Das sieht zwar gut aus, aber Du gibst wieder nicht an, was [mm] F_1 [/mm] und [mm] F_2 [/mm] sind. Schön, dass Du das für Dich festgelegt hast, aber Du musst es kommunizieren. Als Korrektor (Lehrer) würde ich Dir an dieser Stelle genau 0 Punkte geben, weil die Gleichungen ohne die Angabe, was [mm] F_1 [/mm] und [mm] F_2 [/mm] sind, völlig bedeutungslos sind.

Richtig sind sie, wenn [mm] F_1 [/mm] die Lateralkomponente und [mm] F_2 [/mm] die Normalkomponente beschreiben.

Genau dann kommst Du zu [mm] F_G*\sin{\alpha}=F_Z*\cos{\alpha}. [/mm]

So, jetzt hast Du alle Gleichungen, um die Aufgabe endlich zu lösen.
Mach mal.

Grüße
reverend


Bezug
                                                                                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mo 12.11.2012
Autor: Duckx

[mm] $tan\alpha=\frac{F_Z}{F_G}$ [/mm]

[mm] $tan\alpha=\frac{v^2}{r\cdot{} g}$ [/mm]

Allerdings stört mich das tan da. Das ist ja noch nicht direkt die geforderte Funktion oder?

Bezug
                                                                                                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 12.11.2012
Autor: leduart

Hallo
mit einigem Denken kommst du selbst drau, wie man [mm] \alpha [/mm] bekommt, wenn man [mm] tan\alpha [/mm] kennt
Gruss leduart

Bezug
                                                                                                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mo 12.11.2012
Autor: Duckx

Ist das richtig?
[mm] $\alpha=arctan(\frac{v^2}{g \cdot{} r})$ [/mm]

Bezug
                                                                                                                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Mo 12.11.2012
Autor: reverend


> Ist das richtig?
>  [mm]\alpha=arctan(\frac{v^2}{g \cdot{} r})[/mm]

Ja. Puuuh. Was war daran jetzt so schwer? Du kannst es doch.

Grüße
reverend


Bezug
                                                                                                                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mo 12.11.2012
Autor: Duckx

Tut mir leid, ich tue mich schwer bei solchen sachen :(
Angenommen [mm] $\alpha=5^{\circ}$ [/mm]
und die Haftreibung wird berücksichtigt. Ist die Haftreibung dann die Kraft, die ich in meiner Skizze als [mm] $\vec{F}$ [/mm] angegeben habe oder bin ich wieder total daneben?

Bezug
                                                                                                                                        
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Mo 12.11.2012
Autor: leduart

Hallo
Haftreibung kommt in deiner Skizze nicht vor. falls es eine gäbe wäre sie dein F*r wenn r der Reibungsfaktor ist, ABER die Richtung der Reibungskraft ist immer gegen die Bewegungsrichtung. wenn du also nur nicht abrutschen willst wirkt sie in gegenrichtung zur hangabtriebskraft, wenn du beschleunigen bzw. bremsen  willst entgegen der Beschleunigungsrichtung.
wenn der Winkel wie in deiner Rechnung ist und die Geschwindigkeit konstant ist, brauchst du keine haftreibung, da du den Winkel ja gerade so bestimmt hast, dass keine Kraft in Richtung des möglichen Abrutschens wirkt.
wenn [mm] \alpha=5° [/mm] dann hast du tan5°=0,087
dann ist [mm] 0.087=v^2/r*g [/mm] mit [mm] g=10m/s^2 [/mm] und r=100m musst du dann bei glatteis mit [mm] v^2=0.087*100m*10m/s^2=87m^2/s^2 [/mm] fahren also mit v=9,33m/s also ca 33km/h
wenn der Kurvenradius kleiner ist musst du langsamer fahren, also bei r=20m ?
Gruss leduart
Gruss leduart

Bezug
                                                                                                                                                
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mo 12.11.2012
Autor: Duckx

Hallo
Die Aufgabe lautet:
Wie verhält sich der Wagen, wenn die Kurve um [mm] $\alpha=5^{\circ}$ [/mm] geneigt ist und die Haftreibung der Reifen berücksichtigt wird? Fertige eine Skizze an und gib die maximal mögliche Geschw. in der Kurve an!
Daten: $r=100m$ [mm] $\mu_H=0,2$ [/mm]

Wenn das nun gilt, gilt dann die Gleichung die ich weiter oben benutzt habe:

$ [mm] F_G\cdot{}\sin{\alpha}=F_Z\cdot{}\cos{\alpha} [/mm] $

Mit dem Zusatz, dass ich auf der linken seite die Haftreibungskraft addieren muss oder wie gehe ich in dem Fall vor?

Bezug
                                                                                                                                                        
Bezug
geneigte Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mo 12.11.2012
Autor: Duckx

kann keiner sagen wie ich das mache?

Bezug
                                                                                                                                                                
Bezug
geneigte Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Mo 12.11.2012
Autor: leduart

Hallo
wenn noch Reibung herrscht, dann muss die Komponente Richtung Bahn nicht 0 sein, sondern darf [mm] =F_R [/mm] sein mit [mm] F_R=0.2F_N [/mm] wobei [mm] F_N [/mm] die kraft senkrecht zur Bahn ist.
du hast also jetzt 4 Kräfte: [mm] F_g, F_z, F_R [/mm] und [mm] F_N [/mm]
Gruss leduart

Bezug
                
Bezug
geneigte Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:22 Mo 12.11.2012
Autor: leduart

Hallo reverend
"Super Aufgabenstellung. Wie hält man denn bei absolutem Glatteis die Geschwindigkeit? Der Luftwiderstand bleibt ja."
a)Nur in der Kurve herrscht Glatteis, und die ist nicht lang.
b)da steht nichts davon, dass das Auto nicht mit Raketenantrieb fährt.
Gruss leduart

Bezug
                        
Bezug
geneigte Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Mo 12.11.2012
Autor: reverend

Hallo leduart,

>  "Super Aufgabenstellung. Wie hält man denn bei absolutem
> Glatteis die Geschwindigkeit? Der Luftwiderstand bleibt
> ja."
>  a)Nur in der Kurve herrscht Glatteis, und die ist nicht
> lang.

Und nur in der nicht langen Kurve (sagen wir: deutlich kürzer als "ziemlich lang") weht auch ein Rückenwind, immer in der Geschwindigkeit des jeweils fahrenden Autos.

>  b)da steht nichts davon, dass das Auto nicht mit
> Raketenantrieb fährt.

Ich war inzwischen von einer abschüssigen Kurve ausgegangen, nicht von einem teuren Antrieb. Natürlich muss sich auch diese Geländeneigung der Geschwindigkeit des Autos und den Windverhältnissen anpassen.

Aber ehe das kompliziert wird, vernachlässigen wir das Problem lieber.

Herzliche Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]