www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihengeo. Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - geo. Reihe
geo. Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geo. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 23.02.2011
Autor: diddy449

Aufgabe
Sei [mm] a_{n}:=(\summe_{k=0}^{n+1}x^{3k})-1 [/mm] mit |x|<1

Gilt die geo. Summe nur für [mm] \summe_{k=0}^{n}x^{k}=\bruch{1-x^{n+1}}{1-x}\to \bruch{1}{1-x} [/mm]

oder gilt auch:
[mm] \summe_{k=0}^{n+1}x^{3k}=\bruch{1-x^{3(n+1)}}{1-x}\to \bruch{1}{1-x} [/mm]

Und falls das nicht gilt, würde ich mich über einen Tipp bei der Bestimmung des Grenzwertes sehr freuen.

Danke

        
Bezug
geo. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mi 23.02.2011
Autor: kamaleonti

Hi,
> Sei [mm]a_{n}:=(\summe_{k=0}^{n+1}x^{3k})-1[/mm] mit |x|<1
>  Gilt die geo. Summe nur für
> [mm]\summe_{k=0}^{n}x^{k}=\bruch{1-x^{n+1}}{1-x}\to \bruch{1}{1-x}[/mm]
>  
> oder gilt auch:
>  [mm]\summe_{k=0}^{n+1}x^{3k}=\bruch{1-x^{3(n+1)}}{1-x}\to \bruch{1}{1-x}[/mm]

Nein, hier fehlen zwischendurch ja immer wieder Summanden, und es ist klar, dass sich dadurch der Wert der Summe im Allgemeinen verändert.

>  
> Und falls das nicht gilt, würde ich mich über einen Tipp
> bei der Bestimmung des Grenzwertes sehr freuen.

Wenn |x|<1, dann ist auch [mm] |x^3|<1. [/mm] Damit kann es trotzdem auf die geometrische Summe zurückgeführt werden.
Beachte noch [mm] x^{3k}=\left(x^3\right)^k [/mm]

>  
> Danke

Gruß

Bezug
                
Bezug
geo. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Mi 23.02.2011
Autor: diddy449

alles klar, den fall [mm] x\ge [/mm] 0 hab ich dann mit [mm] an\to\bruch{1}{1-x^{3}}-1 [/mm]

und wie ist das bei x<0
dann kommt irgendwie
[mm] (\summe_{k=1}^{n+1}(-x)^{3k})-1=(\summe_{k=1}^{n+1}(-1)^{3k}x^{3k})-1 [/mm]

Bezug
                        
Bezug
geo. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mi 23.02.2011
Autor: kamaleonti


> alles klar, den fall [mm]x\ge[/mm] 0 hab ich dann mit
> [mm]an\to\bruch{1}{1-x^{3}}-1[/mm]
>  
> und wie ist das bei x<0
> dann kommt irgendwie
> [mm](\summe_{k=1}^{n+1}(-x)^{3k})-1=(\summe_{k=1}^{n+1}(-1)^{3k}x^{3k})-1[/mm]

Das Vorzeichen macht bei der Verwendung der geom. Summenformel keinen unterschied. Der Grenzwert ist gleich. es zählt nur, dass [mm] |x^3|<1 [/mm]

>  

Gruß

Bezug
                                
Bezug
geo. Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Mi 23.02.2011
Autor: diddy449

ok danke kamaleonti

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]