www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesgeometrische Realisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - geometrische Realisierung
geometrische Realisierung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische Realisierung: wie zeigen?
Status: (Frage) überfällig Status 
Datum: 12:44 Sa 17.05.2008
Autor: Lee1601

Aufgabe
Sei [mm] \Delta [/mm] ein simplizialer Komplex über der Menge [n]  = {1,2,....,n}.
Zeigen Sie: [mm] \Delta [/mm] hat eine geometrische Realisierung im [mm] \IR^n [/mm]

Hallo zusammen!

Die obige Aufgabe ist die einzige, die uns noch für unseren aktuellen Kombinatorik Zettel fehlt. Wir haben allerdings keine Ahnung, wie wir das zeigen sollen. Unsere Idee wäre, dass jedem i aus [n] der i-te Einheitsvektor zugeordnet wird, so käme man auf n Vektoren also die Basis des [mm] \IR^n. [/mm]
Im Folgenden notiere ich euch mal kurz die Definitionen, die wir zu geometrischer Realisierung hatten.

1) Sei [mm] \Delta [/mm] ein simplizialer Komplex und [mm] \Gamma [/mm] ein geometrischer simplizialer Komplex mit [mm] \Delta_\Gamma [/mm] = [mm] \Delta [/mm] (nach evtl. Umbenennung der Grundmenge). Dann heißt [mm] \Gamma [/mm] eine geometrische Realisierung von [mm] \Delta. [/mm]

2) Ein geometrischer simplizialer Komplex [mm] \Gamma [/mm] im [mm] \IR^n [/mm] über einer Punktmenge [mm] {a_0,.....,a_r} \in \IR^n [/mm] ist eine Menge von Simplizes [mm] S(b_0,...,b_i) [/mm] mit

- [mm] b_0,....,b_i \in [/mm] { [mm] a_0,....,a_r [/mm] }
- [mm] b_0,...,b_i [/mm] affin linear unabhängig

sodass für [mm] S(b_0,...,b_i) \in \Gamma [/mm] auch [mm] S(b_j_0,....,b_j_s) \in \Gamma [/mm] für alle
0 [mm] \le j_0 [/mm] <......< [mm] j_s=i [/mm] und 0 [mm] \le [/mm] s [mm] \le [/mm] i und für [mm] S(b_0,...,b_i), S(b_0´,..., b_i´) \in \Gamma [/mm] gilt [mm] S(b_0,...,b_i) \cap S(b_0´,...,b_i´) [/mm] = [mm] \emptyset [/mm] oder
[mm] S(c_0,...c_k) [/mm] für { [mm] c_0,...,c_k [/mm] } = { [mm] b_0,....,b_i [/mm] } [mm] \cap [/mm] { [mm] b_0´,...,b_i´ [/mm] }

Hoffe es gibt jemanden, der dazu ne Idee hat.

Vielen Dank im Voraus!

lg


        
Bezug
geometrische Realisierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 19.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]