www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichengeometrische Reihe, Grenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - geometrische Reihe, Grenzwerte
geometrische Reihe, Grenzwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische Reihe, Grenzwerte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:03 Fr 30.11.2007
Autor: Marty

Aufgabe
Es seien [mm] I_n= \integral \integral_{D}{\bruch{(xy)^n}{1+xy} dxdy} [/mm] ,
I= [mm] \integral \integral_{D}{\bruch{1}{1+xy} dxdy}, [/mm] wobei D = [0,1] x [0,1].
a) Zeigen Sie, dass 0 [mm] \le I_n \le \bruch{1}{(1+n)^2}. [/mm]
  Leiten Sie den Limes von [mm] I_n [/mm] her.

b) Zeigen Sie, dass gilt
[mm] \bruch{1}{1+xy}= \summe_{k=0}^{n-1}(-1)^k x^k y^k [/mm] + [mm] \bruch{(-xy)^n}{1+xy} [/mm]

Hallo,

bei der a) habe ich leider noch gar keine Idee, wie das zu zeigen ist.
Für Vorschläge wäre ich sehr dankbar.

Die b) müsste man meiner Meinung nach miteiner geometrischen Reihe Lösen können:

Für die Lösung dieser Aufgabe habe ich mich folgender Formeln bedient:

[mm] \summe_{k=0}^{\infty}a_0 q^k [/mm] = [mm] \bruch{a_0}{1-q} [/mm]   und
[mm] \summe_{k=0}^{n}a_0 q^k [/mm] = [mm] a_0 \bruch{1-q^{n+1}}{1-q} [/mm]

eingesetzt: [mm] a_0 [/mm] =1   und  q= -xy

[mm] \bruch{1}{1+xy} [/mm] = [mm] \summe_{k=0}^{\infty}(-xy)^k [/mm] = [mm] \summe_{k=0}^{\infty}(-1)^k x^k y^k [/mm]


[mm] \summe_{k=0}^{n}(-1)^k x^k y^k [/mm] = [mm] \bruch{1-(-xy)^{n+1}}{1-(-xy)} \Rightarrow [/mm]

[mm] \summe_{k=0}^{n-1}(-1)^k x^k y^k [/mm] = [mm] \bruch{1-(-xy)^{n}}{1+xy} [/mm]
das sieht dem 2. Term schon sehr ähnlich, nur weiß ich leider nicht wie ich die 1 im Zähler loswerde...
Weiterhin ist mir noch unklar wie ich beide Terme miteinander verknüpfen kann...

Gruß
Marty

        
Bezug
geometrische Reihe, Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 Fr 30.11.2007
Autor: Marty

Ich denke, die 2.Frage habe ich mir gerade selbst beantwortet:
  

> [mm]\summe_{k=0}^{n-1}(-1)^k x^k y^k[/mm] = [mm]\bruch{1-(-xy)^{n}}{1+xy}[/mm] = [mm] \bruch{1}{1+xy} [/mm] - [mm] \bruch{(-xy)^n}{1+xy} [/mm]

[mm] \Rightarrow [/mm]

[mm] \bruch{1}{1+xy} [/mm] = [mm] \summe_{k=0}^{n-1}(-1)^k x^k y^k [/mm] + [mm] \bruch{(-xy)^n}{1+xy} [/mm]

Zufällig kommt hier das richtige raus, aber ist mein Rechenweg auch richtig? :)

bei der a) bräuchte ich immernoch Hilfe...

Bezug
                
Bezug
geometrische Reihe, Grenzwerte: Tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Fr 30.11.2007
Autor: leduart

Hallo
versuch doch einfach mal b) -das du richtig hast!- nach dem Ausdruck in a aufzulösen und dann das Integral zu betrachten.
Gruss leduart

Bezug
                        
Bezug
geometrische Reihe, Grenzwerte: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:16 Fr 30.11.2007
Autor: Marty

Danke für den Tipp,
aber wie kann ich das nach [mm] \bruch{1}{(1+n)^2} [/mm] auflösen?

Bezug
                                
Bezug
geometrische Reihe, Grenzwerte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 So 02.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]