www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungengeordnete Basen, Isomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - geordnete Basen, Isomorphismus
geordnete Basen, Isomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geordnete Basen, Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 So 12.02.2012
Autor: theresetom

Aufgabe
Für ein System von vektoren [mm] b_1, [/mm] ... [mm] ,b_n [/mm] eines [mm] \IK-Vektorraums [/mm] V sind äquivalent:
> Die Vektoren [mm] b_1,...,b_n [/mm] bilden eine geordnete Basis von V
> Die Abbildung [mm] \phi: \IK^n [/mm] -> V

[mm] \phi(\vektor{x_1 \\ ...\\x_n}) [/mm] := [mm] x_1 b_1+..+x_n b_n [/mm] ist ein linearer Isomorphismus.

Kann ich diese Äquivalenz irgendwie beweisen?

Ich weiß unter einer Basis eines Vektorraums verstehen
wir ein linear unabhängiges Erzeugendensystem. dh.Zu jedem v ∈ V existieren eindeutige Skalare [mm] \lambda_1,...\lambda_n [/mm] ∈ K  sodass v [mm] =\lambda_1 b_1 ...+\lambda_n b_n [/mm] schreiben

        
Bezug
geordnete Basen, Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 So 12.02.2012
Autor: leduart

Hallo
ja du solltest das können, wie ist denn ein Isophormismus definiert. nur das musst du zeigen.
Gruss leduart

Bezug
                
Bezug
geordnete Basen, Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 12.02.2012
Autor: theresetom

ah, jetzt ist mir das klar!

Ich muss

> Linearität
> Biejektivität von [mm] \phi [/mm] zeigen.

Linearität
[mm] \phi(\vektor{x_1 \\ ...\\x_n})+\phi(\vektor{y_1 \\ ...\\y_n})=x_1b_1+...+x_nb_n [/mm] + [mm] y_1b_1+....y_nb_n= (x_1+y_1)b_1+....+(x_n+y_n)b_n [/mm] = [mm] \phi(\vektor{x_1 +y_1\\ ...\\x_n+y_n}) [/mm]
[mm] \lambda \phi(\vektor{x_1 \\ ...\\x_n})= \lambda [/mm] * [mm] (x_1b_1+...+x_nb_n [/mm] ) = [mm] \lambda [/mm] * [mm] x_1b_1 [/mm] + ... [mm] \lambda *x_n b_n= \phi(\vektor{\lambda x_1 \\ ...\\\lambda x_n}) [/mm]

Injektivität:
Sei [mm] \phi(\vektor{x_1 \\ ...\\x_n})=(\vektor{y_1 \\ ...\\y_n}) [/mm]
ZZ. [mm] \vektor{x_1 \\ ...\\x_n}=\vektor{y_1 \\ ...\\y_n} [/mm]
[mm] \phi(\vektor{x_1 \\ ...\\x_n}) [/mm] = [mm] (\vektor{y_1 \\ ...\\y_n}) [/mm]
[mm] x_1b_1+...+x_nb_n =y_1b_1+....y_nb_n [/mm]
[mm] (x_1-y_1)b_1+...+(x_n-y_n)b_n=0 [/mm]
Linear unabhängig => Koeffizienten alle 0
[mm] x_1-y_1=0 [/mm]
...
[mm] x_n-y_n=0 [/mm]
<=> [mm] x_1=y_1 [/mm]
....
[mm] x_n=y_n [/mm]
[mm] <=>\vektor{x_1 \\ ...\\x_n}=\vektor{y_1 \\ ...\\y_n} [/mm]

Surjektivität:
ZZ.: sei [mm] t_1*b_1+...+t_nb_n \in [/mm] V so muss [mm] \exists \vektor{t_1 \\ ...\\t_n} \in \IK^n [/mm] so dass [mm] \phi(\vektor{t_1 \\ ...\\t_n} )=t_1*b_1+...+t_nb_n [/mm]
Sei [mm] t_1*b_1+...+t_nb_n \in [/mm] V

Wie mache ich hier weiter?

Bezug
                        
Bezug
geordnete Basen, Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Mo 13.02.2012
Autor: angela.h.b.


> Surjektivität:
>  ZZ.: sei [mm]t_1*b_1+...+t_nb_n \in[/mm] V so muss [mm] [s]\exists[/s] [/mm] ein [mm] \vektor{t_1 \\ ...\\ t_n} \in \IK^n[/mm] [/mm]

existieren,

> so dass [mm]\phi(\vektor{t_1 \\ ...\\ t_n} )=t_1*b_1+...+t_nb_n[/mm]
>  
> Sei [mm]t_1*b_1+...+t_nb_n \in[/mm] V.

Es ist [mm] \phi(\vektor{t_1 \\ ...\\ t_n} )=t_1*b_1+...+t_nb_n. [/mm]

Fertig.

Ein Wörtchen wäre noch zur Wohldefiniertheit von [mm] \phi [/mm] zu verlieren.

LG Angela

>  
> Wie mache ich hier weiter?


Bezug
                                
Bezug
geordnete Basen, Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Mo 13.02.2012
Autor: theresetom

Hallo, danke
Wie zeige ich die Wohldefiniertheit?

LG

Bezug
                                        
Bezug
geordnete Basen, Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Mo 13.02.2012
Autor: fred97


> Hallo, danke
>  Wie zeige ich die Wohldefiniertheit?

Was Angela damit gemeint hat, ist mir nicht klar. Durch



$ [mm] \phi(\vektor{x_1 \\ ...\\x_n}) [/mm] $ := $ [mm] x_1 b_1+..+x_n b_n [/mm] $

wird eine einwandfreie lin. Abb. definiert.

FRED

>  
> LG


Bezug
                                                
Bezug
geordnete Basen, Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:12 Mo 13.02.2012
Autor: angela.h.b.


> > Hallo, danke
>  >  Wie zeige ich die Wohldefiniertheit?
>  
> Was Angela damit gemeint hat, ist mir nicht klar. Durch
>  
>
>
> [mm]\phi(\vektor{x_1 \\ ...\\ x_n})[/mm] := [mm]x_1 b_1+..+x_n b_n[/mm]
>
> wird eine einwandfreie lin. Abb. definiert.

In der Tat...
Ich hatte wohl im Geiste die Definitionsgleichung geändert.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]