www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und Approximationgewichtetes skalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Interpolation und Approximation" - gewichtetes skalarprodukt
gewichtetes skalarprodukt < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gewichtetes skalarprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:06 Mi 12.05.2010
Autor: kunzmaniac

Aufgabe
Man berechne die Bestapproximation [mm] $g\in P_2[0,1]$ [/mm] zu der Funktion $f(x) = [mm] \wurzel{1-x}$ [/mm] bzgl. [mm] $||f||_w=\wurzel{_w}$ [/mm] mit $w(x)=1-x$ und $<f,g> = [mm] \integral_0^1{f(x)*g(x)*w(x)}dx$. [/mm] Was wäre eine naheliegende, bessere Gewichtsfunktion w zur Approximation von f?  

Hallo,

Die Bestapproximation habe ich, allerdings habe ich bei der Gewichtsfunktion Verständnisprobleme, irgendwie soll die die Approximation an den Rändern 0,1 verbessern. $1-x$ ist 1 für x = 0 und 0 für x = 1, genau wie f, also doch ganz gut. Wie finde ich eine bessere Gewichtsfunktion, was genau bewirkt ein solches w in meinem Skalarprodukt?
Ich habe mit Maple mal [mm] $\wurzel{1/4-(x-1/2)^2}$ [/mm] ausprobiert - die Näherungsfunktion kam an den Rändern etwas herunter, aber in der stelle 0 will ich das ja gar nicht...

vielen Dank für Eure Hilfe

        
Bezug
gewichtetes skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 14.05.2010
Autor: ullim

Hi,

ja wirklich was Gutes ist mir auch nicht eingefallen. Man könnte allerdings die Gewichtsfunktion w(x) wie folgt etwas allgemeiner definieren durch

[mm] w(x)=(a-x)^\alpha*(b-x)^\beta [/mm] mit [mm] \alpha,\beta\in\IR [/mm] und a=0, b=1

Das deckt den angegebenen Fall ab, wähle [mm] \alpha=0 [/mm] und [mm] \beta=1 [/mm] und auch die von Dir ausprobierte Funktion mit [mm] \alpha=\bruch{1}{2} [/mm] und [mm] \beta=\bruch{1}{2} [/mm]

Jetzt kann man an den Parametern [mm] \alpha [/mm] und [mm] \beta [/mm] spielen und sich die beste Approximation raussuchen.

Aber wie gesagt, zufrieden bin ich damit eigentlich nicht, deshalb setze ich den Status auch nur auf teilweise beantwortet.

Vielleicht fällt ja jemand anderem was Gutes ein.



Bezug
        
Bezug
gewichtetes skalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 15.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]