www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraggT = 1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - ggT = 1
ggT = 1 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT = 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 So 27.04.2008
Autor: NightmareVirus

Aufgabe
Sei L = { [mm] a^{i},a^{j} [/mm] } für i,j [mm] \ge [/mm] 1.

Zeigen Sie für den Fall ggT(i,j) = 1, dass L* für ein geeignetes [mm] k_{0} [/mm] alle Wröter [mm] a^{k} [/mm] enthält mit k [mm] \ge k_{0}. [/mm]

Zeigen Sie, dass die Behauptung nicht zutrifft für ggT(i,j) > 1.

Also für die Nicht-Informatiker unter uns erklär ich kurz, was mit der Aufgabenstellung gemeint ist:
[mm] a^{i},a^{j} [/mm] sind 2 Wörter der Sprache L.

Also Beispielsweise [mm] a^{3} [/mm] und [mm] a^{5}. [/mm]

In L* sind dann alle Wörter die man durch beliebige Multiplikation dieser Wörter erhält.
Also zum Beispiel:
[mm] a^{3} [/mm]
[mm] a^{5} [/mm]
[mm] a^{6} [/mm] = [mm] a^{3}*a^{3} [/mm]
[mm] a^{8} [/mm] = [mm] a^{3}*a^{5} [/mm]
[mm] a^{10} [/mm] = [mm] a^{5}*a^{5} [/mm]
[mm] a^{12} [/mm] = [mm] a^{6}*a^{6} [/mm]
.
.
.
gezeigt werden soll nun, dass für alle teilerfremden i,j ab einem bestimmten [mm] k_{0} [/mm] diese auflistung "lückenlos" ist.
Ich hab keine Idee wie ich an die Sache ran gehen soll.

---

Ein Gegenbeispiel für den zweiten Aufgabenteil zu finden ist relativ einfach
L = { [mm] a^{2}, a^{4} [/mm] } definiert offensichtlich alle Wört [mm] a^{2n} [/mm] mit n [mm] \in \IN [/mm] => [mm] a^{2n+1} [/mm] lässt sich nie bilden.rr



        
Bezug
ggT = 1: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 So 27.04.2008
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo

> Sei L = { [mm]a^{i},a^{j}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} für i,j [mm]\ge[/mm] 1.

>  
> Zeigen Sie für den Fall ggT(i,j) = 1, dass L* für ein
> geeignetes [mm]k_{0}[/mm] alle Wröter [mm]a^{k}[/mm] enthält mit k [mm]\ge k_{0}.[/mm]
>  
> Zeigen Sie, dass die Behauptung nicht zutrifft für ggT(i,j)
> > 1.
>  Also für die Nicht-Informatiker unter uns erklär ich kurz,
> was mit der Aufgabenstellung gemeint ist:
>  [mm]a^{i},a^{j}[/mm] sind 2 Wörter der Sprache L.
>  
> Also Beispielsweise [mm]a^{3}[/mm] und [mm]a^{5}.[/mm]
>  
> In L* sind dann alle Wörter die man durch beliebige
> Multiplikation dieser Wörter erhält.
>  Also zum Beispiel:
> [mm]a^{3}[/mm]
>  [mm]a^{5}[/mm]
>  [mm]a^{6}[/mm] = [mm]a^{3}*a^{3}[/mm]
>  [mm]a^{8}[/mm] = [mm]a^{3}*a^{5}[/mm]
>  [mm]a^{10}[/mm] = [mm]a^{5}*a^{5}[/mm]
>  [mm]a^{12}[/mm] = [mm]a^{6}*a^{6}[/mm]
>  .
>  .
>  .
>  gezeigt werden soll nun, dass für alle teilerfremden i,j
> ab einem bestimmten [mm]k_{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

diese auflistung "lückenlos"

> ist.
>  Ich hab keine Idee wie ich an die Sache ran gehen soll.

Das Stichwort lautet: Bezout-Gleichung. Demnach gibt es $f, g \in \IZ$ mit $f i + g j = 1$. Erstmal ist vermutlich eins der $f$ und $g$ negativ. Sagen wir mal, das $f$ negativ ist.

Wenn du dann ein beliebiges $z \in \IN$ hast, kannst du es ja schreiben als $z = q i + r$ mit $0 \le r < i$. Dann ist $z = q i + r (f i + g j)$. Kannst du Anhand dessen ein $z_0$ angeben, fuer welches die Aussage gilt?

> Ein Gegenbeispiel für den zweiten Aufgabenteil zu finden
> ist relativ einfach
>  L = { [mm]a^{2}, a^{4}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} definiert offensichtlich alle Wört

> [mm]a^{2n}[/mm] mit n [mm]\in \IN[/mm] => [mm]a^{2n+1}[/mm] lässt sich nie bilden.rr

Genau. Du kannst auch fuer allgemeine $i, j$ mit $d := ggT(i, j) > 1$ ein Gegenbeispiel angeben, welches nur von $d$ abhaengt.

LG Felix


Bezug
                
Bezug
ggT = 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 So 27.04.2008
Autor: NightmareVirus

Danke schonmal für den Hinweis.

Die Bezout gleichung ist mir in den mathematischen Grundlagen schonmal übern Weg gelaufen, da im Zusammenhang mit dem Euklidischen Algoriothmus, also ebenfalls ggT.

Trotzdem komme ich damit nicht weiter. Wenn ich deine Hinweis verwende:

z = q*i + r
[mm] \gdw [/mm] z = q*i + r*1
[mm] \gdw [/mm] z = q*i + r*( f*i + g*j)

und nu? ausmultiplizierren bringt auch nix. Also zumindest nicht was mir zeigt dass die Liste oben irgendwann keine Lücken mehr aufweist...


Bezug
                        
Bezug
ggT = 1: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Mo 28.04.2008
Autor: felixf

Hallo

> Trotzdem komme ich damit nicht weiter. Wenn ich deine
> Hinweis verwende:
>  
> z = q*i + r
>  [mm]\gdw[/mm] z = q*i + r*1
>  [mm]\gdw[/mm] z = q*i + r*( f*i + g*j)
>  
> und nu? ausmultiplizierren bringt auch nix.

Doch, sehr viel. Danach musst du halt wieder zusammenfassen, dass du etwas in der Form [mm] $\alpha [/mm] i + [mm] \beta [/mm] j$ da stehen hast. Sowas kannst du ja darstellen, solange [mm] $\alpha, \beta \ge [/mm] 0$ sind.

LG Felix


Bezug
                                
Bezug
ggT = 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Mo 28.04.2008
Autor: NightmareVirus

Also irgendwie steh ich immer noch auffem Schlauch oder seh den Wald vor lauter Bäumen nicht.

Also ich schreibmal was ich bisher hab.

Mitder Bezout-Gleichung (vgl. math. Grundlagen) folgt:

[mm] \exists [/mm] f,g [mm] \in \IZ [/mm] mit fi+gj = 1. Dabei sind i,j teilerfremd.

Darüber hinaus gilt: Jede beliebige Zahl z [mm] \in \IN [/mm] kann man durch
z = q*i + r ausdrücken

z = q*i + r
[mm] \gdw [/mm] z = q*i +r*1
[mm] \gdw [/mm] z = q*i +r*(f*i + g*j)
[mm] \gdw [/mm] z = q*i +r*f*i + r*g*j
[mm] \gdw [/mm] z = (q +r*f)*i + r*g*j

Setze nun [mm] \alpha [/mm] := (q+r*f) und [mm] \beta [/mm] := (r*g)

[mm] \Rightarrow [/mm] z = [mm] \alpha [/mm] * i + [mm] \beta*j [/mm]
-----------------

Damit hab ich ja nur gezeigt dass ich eine Zahl z durch die Teilerfremden Zahlen i und j ausdrücken kann. Was hat das aber mit der Aufgabe zu tun?
  




Bezug
                                        
Bezug
ggT = 1: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Di 29.04.2008
Autor: felixf

Hallo!

> Also irgendwie steh ich immer noch auffem Schlauch oder seh
> den Wald vor lauter Bäumen nicht.
>  
> Also ich schreibmal was ich bisher hab.
>  
> Mitder Bezout-Gleichung (vgl. math. Grundlagen) folgt:
>  
> [mm]\exists[/mm] f,g [mm]\in \IZ[/mm] mit fi+gj = 1. Dabei sind i,j
> teilerfremd.
>  
> Darüber hinaus gilt: Jede beliebige Zahl z [mm]\in \IN[/mm] kann man
> durch
>  z = q*i + r ausdrücken
>  
> z = q*i + r
>  [mm]\gdw[/mm] z = q*i +r*1
>  [mm]\gdw[/mm] z = q*i +r*(f*i + g*j)
>  [mm]\gdw[/mm] z = q*i +r*f*i + r*g*j
>  [mm]\gdw[/mm] z = (q +r*f)*i + r*g*j
>  
> Setze nun [mm]\alpha[/mm] := (q+r*f) und [mm]\beta[/mm] := (r*g)
>  
> [mm]\Rightarrow[/mm] z = [mm]\alpha[/mm] * i + [mm]\beta*j[/mm]
>  -----------------
>  
> Damit hab ich ja nur gezeigt dass ich eine Zahl z durch die
> Teilerfremden Zahlen i und j ausdrücken kann. Was hat das
> aber mit der Aufgabe zu tun?

Wie sehen die Elemente aus [mm] $L^\ast$ [/mm] denn aus?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]