gleichmässige Konvergenz < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 10:34 Sa 06.04.2013 | Autor: | f12 |
Hallo
Ich lese zur Zeit das Buch von Rogers and Williams: Diffusions, Markov Processes and Martingales Volume 2. Auf Seite 15 beweist man ein Theorem mittels Monotone Class Theorem. Dazu sei [mm] $\mathcal{H}$ [/mm] die Menge aller predictable und beschränkter Prozess $H$ so dass das Stochastische Integral [mm] $H\bullet [/mm] M$ ein Martingal ist. Wobei $M$ ein Martingale ist mit [mm] $M_0=0$ [/mm] und ein IV Prozess (integrable variation process). D.h. [mm] $EV_M(\infty,\omega) <\infty$, [/mm] wobei [mm] $V_M(\infty,\omega):=\lim_{t\to\infty}V_M(t,\omega)$. [/mm] Letzteres ist einfach die Variation von $M$ über dem Intervall $(0,t]$.Nun muss ich folgende zwei Punkte des Monotone Class Theorem beweisen:
1. Wenn [mm] $(H_n)$ [/mm] eine Folge [mm] $\mathcal{H}$ [/mm] ist, die gleichmässig auf [mm] $(0,\infty)\times \Omega$ [/mm] gegen eine Funktion $H$ konvergiert, dann gilt [mm] $H\in\mathcal{H}$.
[/mm]
2. Wenn [mm] $(H_n)$ [/mm] eine gleichmässig beschränkte Folge von nichtnegativen Elementen aus [mm] $\mathcal{H}$ [/mm] ist und [mm] $H_n\Uparrow [/mm] H$, dann gilt [mm] $H\in\mathcal{H}$.
[/mm]
Das Buch behauptet, dass man die zwei Punkte simultan zeigen kann. Dazu nimmt man eine Folge [mm] $(H_n)\subset \mathcal{H}$ [/mm] welche gleichmässig beschränkt ist und nimmt an, dass [mm] $H(t,\omega)=\lim_nH_n(t,\omega)$ [/mm] für alle [mm] $t,\omega$ [/mm] existiert. Mittels Dominated Convergence Theorem kann man nun zeigen, dass $für jedes $t$
[mm] $(H_n\bullet M)_t\to(H\bullet [/mm] M)$
in [mm] $L^1$ [/mm] konvergiert. Ebenso wissen wir, dass [mm] $H_n\bullet [/mm] M$ ein martingale ist für alle $n$, also erhält man: [mm] $E[(H_n\bullet M)_t|\mathcal{F}_s]=(H_n\bullet M)_s$. [/mm] Nun kann man die Konvergenz in [mm] $L^1$ [/mm] verwenden und erhält:
[mm] $E[(H\bullet M)_t|\mathcal{F}_s]=(H\bullet M)_s$
[/mm]
Das zeigt mir klarerweise Punkt 2. Aber wieso sollte dies auch Punkt 1 zeigen? Denn schliesslich ist die gleichmässige beschränkt zentral um Dominated Convergence anzuwenden. Wie kann ich sonst Punkt 1 zeigen?
Wäre echt froh, wenn mir jemand helfen könnte. Schon jetzt danke für eure Hilfe!
f12
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Di 07.05.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|